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Abstract

Over the last decades, a lot of research studies have dealt with the notion of dexterity,

focusing either on the human arm-hand system or on various technical devices such as

robot manipulators, robot hands, grippers, etc. The term “dexterity” was approached in

many different ways and various definitions have been provided. Nowadays there is still

a lack of a clear pathway to improve the dexterity of a specific gripper or hand. This

thesis focuses on the analysis and evaluation of the dexterity of human and robot hands,

focusing on the grasping and dexterous manipulation capabilities. To accomplish that, it

first investigates the boundaries of the term dexterity by analyzing, evaluating, and clas-

sifying the proposed classes and metrics. Based on this analysis and evaluation, a new

modular, affordable, accessible open-source dexterity test is proposed that enables repli-

cable research using standardized objects, benchmarking protocols, and scoring method-

ology for evaluating the dexterity of humans and robots alike. Following this, we analyze,

quantify, and model the different aspects of human dexterity through extensive experi-

mentation. The current capabilities of various grippers are benchmarked against human

performances to identify the limitations of the designs. We further derive insights for the

selection of successful task execution strategies employed by humans with the purpose of

translating them into skills for robotic end-effectors. Furthermore, new dexterity classes

and metrics have been proposed based on this benchmarking and analysis of the unique

strategies utilized by human hands in the successful execution of complex tasks. The

proposed metrics are used in the formulation of a design optimization framework that

facilitates the design, modelling, and development of a new generation of dexterous arti-

ficial hands. The efficiency of the optimization framework is demonstrated by creating a

multimodal robotic gripper with reconfigurable finger bases and lockable joints that ex-

hibits improved manipulation capabilities without sacrificing grasping performance. We

also proposed a complete methodology for exploiting the post contact reconfiguration of

adaptive robot grippers and hands (that is due to the structural compliance and underac-

tuation of the designs) to improve their dexterous manipulation capabilities by predicting

the forces exerted based on their reconfiguration profile. The insights from the research
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work conducted in this PhD thesis can be employed for the development of new, highly

efficient adaptive robotic grippers and hands that perform on par with humans.
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Chapter 1

Background and Motivation

1.1 Background

The human hand has enabled us to successfully explore and interact with a plethora of

unstructured and dynamic environments exhibiting a level of skillfulness that cannot be

found in other primates. This can be attributed to the sensory and motor capabilities that

endow the human hand with unique manipulation capabilities and a degree of specializa-

tion that is not found in other human body parts [1]. These properties of the human hand

allows it to successfully manipulate a wide range of objects irrespectively of changes

to environment/external disturbances making it Nature’s most dexterous and versatile

end-effector. It has also been debated whether the increased dexterity of the human hand

resulted in the development of a superior human brain or vice versa [2]. While some

studies explain that the exploration and interaction of the human hand with the environ-

ment has resulted in the co-evolution of human dexterity and superior brain [3, 4], other

studies recognize the development of the superior human brain as a result of the mechan-

ical dexterity of human hand [5]. The mechanical dexterity of the human hand can be

attributed to the opposable thumb and the ability of the carpo-metacarpal bones to rotate

and preposition the finger base frames enabling it to manipulate objects with one hand

[6, 7]. This presents the human hand with as many controllable degrees of freedom as all

the arms, wrists and legs combined [8]. Furthermore, the human hand is the end-effector

of a highly dexterous and versatile system, the human arm. These redundancies in the

human hand system coupled with the redundancy in the arm space provide the human

hand-arm system with a high degree of versatility and dexterity.

Owing to these features the human hand has always been an inspiration for the de-

velopment of robotic hands and grippers that vary from simple two-fingered parallel

jaw grippers to dexterous human-like hands with complex sensing and control mech-
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anisms. Anthropomorphic grippers with high degrees of freedom are considered to be

of paramount value in achieving robust grasping and manipulation capabilities and a

number of five-fingered hands with varying degrees of anthropomorphism have been de-

veloped [9, 10, 11, 12, 13]. However, the increased number of actuators, transmission

components, and sensing modules required to achieve the increased degrees of freedom

are difficult to incorporate and make control computationally expensive and difficult [14,

15]. In recent times, a new class of adaptive underactuated grippers have shown promise

in offering robust grasping as well as improved manipulation capabilities with simple

actuation and lack of complicated sensing [16, 17, 18]. However, the compliance in the

finger joints and the underactuation of these designs introduce a reconfiguration of the

fingers post contact with the objects resulting in variations and a reduction of the contact

forces exerted during this phase [19, 20]. Owing to these limitations, the roboticists have

found it extremely difficult to emulate the level of dexterity and functionality demon-

strated by the human hands despite the plethora of robotic grippers being developed

[21].

1.2 Motivation

The notion of dexterity as defined and utilized across various studies is substantially dif-

ferent from one another and there is no clear means of implementing dexterity in a partic-

ular robotic gripper or hand [21, 8]. The numerous definitions proposed in the literature

with respect to human dexterity [22, 23, 24] and dexterity of robotic end-effectors [5, 25,

26] attribute dexterity to various features. Most human dexterity studies define dexterity

as a measure of functionality and task completion capabilities but do not consider the

workspace or kinematic dexterity [27, 28]. On the other hand, the robotic studies ascribe

the dexterity in terms of kinematic redundancies and workspace maximization consid-

erations among others [29, 30]. These disparities have resulted in numerous methods,

metrics, and tools being introduced to quantify robot dexterity and made comparison

against human counterparts complicated and subjective. Though numerous performance

measures have been employed for a long time by roboticists for the design, synthesis,

and evaluation of robotic manipulators, researchers cannot agree on a commonly ac-

cepted measure owing to the limitations of dimensions, scale, order, and bounds of the

various approaches [31].

Research efforts involving anthropomorphic hands have focused on quantifying robot

dexterity and anthropomorphism through optimization of the spatial correspondences be-

tween the human and the robot systems, minimizing structural dissimilarities, achieving
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human-like compliance, kinematics, and force exertion capabilities but without really

evaluating or optimizing the degree of dexterity of the robot mechanisms [32, 33, 34].

Similarly the performance analysis of the mechanical characteristics and limits of pros-

thetic hands performed by Belter et al concluded that these measures vary with patient

needs and characteristics such as level of amputation, desired activities of daily living,

and specific uses of the devices among others [35]. Other studies have tried to com-

pare the robot performance against humans by evaluating the mechanical complexity

and functional potential of the end-effectors [36]. For this purpose, the grippers were

evaluated to determine the range of achievable grasps [37, 38], manipulation motions

achieved [8], and thumb dexterity [39]. While a number of benchmarking systems have

also been proposed to compare the performance of grippers and human hands, there is an

increasing difficulty in comparing their performance owing to the lack of standardized

benchmarks, metrics, and reproducible experimental setups [40].

This thesis focuses on the systematic analysis, assessment, and evaluation of the dex-

terity of human and robotic hands in the execution of robust grasping and dexterous,

in-hand manipulation tasks. To do so, we will first collect, evaluate, and classify the

pre-existing dexterity and grasp quality metrics. In particular, we create a comprehen-

sive taxonomy of the various dexterity classes using these metrics. Subsequently, we

focus on analyzing, quantifying, and modeling the different aspects of human dexterity

through extensive experimentation. The experiments that are conducted include multi-

ple trials with human subjects performing grasping and dexterous manipulation tasks

with various model and everyday life objects under a range of uncertainties (e.g., object

pose or perception uncertainties) while blocking certain types of feedback (e.g., vision

feedback, tactile feedback etc.). Such experiments help us identify any meaningful corre-

lations between higher-level synergistic organizations of the brain and muscle activities

(e.g., motor strategies) and human dexterity.

By performing these studies that will focus on the human hand, we are able to extend

our knowledge of human dexterity and propose new dexterity classes and metrics. The

derived metrics are then used in the formulation of a design optimization framework for

the development of new robotic and grippers and hands that are as dexterous and efficient

as possible but also intuitive and simple to control.





Chapter 2

Thesis Objective and Thesis
Structure

2.1 Objectives

The main goal of this thesis is to analyse and evaluate the dexterity and the grasping and

dexterous manipulation capabilities of human and robot hands, deriving design inputs

for the development of new classes of robotic grippers and hands that exhibit the same

level of dexterity as the human hands. To do this, we first clearly define the term dexterity

with respect to human hands and robotic end-effectors. We derive the various attributes

and characteristics that contribute towards the increased human dexterity and propose

methods to translate these attributes to robotic grippers and hands. The main objectives

of this work are:

1. Investigate the boundaries of the term dexterity, analysing, evaluating, and classi-

fying the proposed classes and metrics, formulating new taxonomies.

2. Analyze, quantify, and model the different aspects of human dexterity through

extensive experimentation.

3. Benchmark the current capabilities of the robotic end-effectors against human

hands and identify the factors that contribute towards dexterity shortcomings in

robot grippers and hands.

4. Propose new dexterity classes and metrics based on analysis and benchmarking.

5. Employ the proposed metrics in the formulation of design optimization frame-

works that will lead to a new generation of dexterous artificial hands that are

lightweight, affordable, simple to control and intuitive to operate.
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2.2 Ethics Approval

All the experiments conducted for the completion of this thesis have received the ap-

proval of the University of Auckland Human Participants Ethics Committee (UAHPEC)

with the reference number #019043. Prior to the study, all subjects provided written and

informed consent to the experimental procedures.

2.3 Thesis Layout

This thesis is divided into five main parts: Introduction (Part I), Related Work on Defining

and Evaluating Dexterity (Part II), Analysis, Evaluation, and Comparison of Human and

Robot Dexterity (part III), Improving the Design of Adaptive Robot Hands and Grippers

(Part IV), and Conclusion and Future Directions (Part V).

The chapters of Part I are organized as follows:

• Chapter 2 discusses the main objectives of this thesis.

• Chapter 3 presents the equipment and apparatus used to conduct experiments to

test and validate the proposed frameworks.

The chapters of Part II are organized as follows:

• Chapter 4 presents an overview of the human hand, Nature’s most effective end

effector. The terms dexterity, grasping, and manipulation are explored with respect

to human hands, robot hands, and grippers.

• Chapter 5 examines the state of the art dexterity measures, benchmarking tools,

and metrics that are used to evaluate human and robot dexterity.

The chapters of Part III are organized as follows:

• Chapter 6 presents a new open-source dexterity test that can be used for bench-

marking the dexterity, grasping, and manipulation capabilities of humans and

robots alike. A standardised scoring methodology and a dexterity metric to quan-

tify the benchmarking results are also proposed.

• Chapter 7 discusses a kitchen activities specific dexterity comparison between hu-

mans and robotic end-effectors, as an initial study focusing on the promising field

of household robots. The unique attributes of human grasping and manipulation
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strategies are classified in a taxonomy that can be used for developing alternate

strategies using existing robot designs as well as for the development of new

classes of robotic grippers and hands. New metrics for designing efficient data

collection processes and protocols focusing on the most critical / valuable data are

also proposed.

The chapters of Part IV are organized as follows:

• Chapter 8 presents a methodology that exploits the "parasitic" post-contact recon-

figuration of adaptive fingers with compliant joints to predict the forces exerted by

the adaptive robotic fingers.

• Chapter 9 presents a design optimization framework for improving the dexterous

manipulation capabilities of robotic grippers without sacrificing their grasping ef-

ficiency. The results of the optimization are used to develop multi-modal robotic

grippers with reconfigurable finger bases that have significantly increased manip-

ulation capabilities and dexterous manipulation workspaces.

Finally:

• Chapter 10 concludes the thesis by highlighting the major contributions of this

work and providing future directions for research.





Chapter 3

Apparatus

This chapter introduces the robotic equipment used throughout this thesis. This includes:

• Motion capture systems used for tracking human and robot motions.

• Force measurement devices to capture the output forces exerted by the grippers

and hands.

• Robotic grippers and hands developed by the New Dexterity research group.

• Interfaces employed to control the robotic grippers for the performance of various

tasks.

3.1 Motion Capture System

3.1.1 Fiducial Markers

We employed fiducial marker based motion tracking for real time pose estimation. In

this study, we employed the ArUco class of fiducial markers [41]. A webcam was used

to track appropriately designed square fiducial markers generated from the 7 by 7 ArUco

library. This computer vision processing library enables the detection of square fiducial

markers. Relative positional data such as the angles and the Cartesian coordinates for

each marker were extracted using the OpenCV [42] implementation. Figure 3.1a shows

a base ArUco marker used as the origin. The initial pose and trajectory of the gripper

are calculated relative to this marker using a secondary marker placed on the interface as

shown in Figure 3.1b. The markers are tracked during the operation of the gripper using

a birds eye camera (Intel RealSense T265) mounted 60 cm above the origin marker to

ensure all markers are within the field of view. Figure 3.1c shows another example where

11
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a 4k web camera tracks ArUco markers attached to the finger structure to obtain relative

positional data like each marker’s angles and cartesian coordinates.

Figure 3.1: Examples of aruco markers being used to: a) locate the origin, b) track the

hand motion, and c) determine the joint configurations of fingers.

3.2 Force Measurement Devices

A Biopac MP36 data acquisition unit (Biopac Systems, Inc., Goleta, California) equipped

with the SS25LA dynamometer was used to collect force measurements. The SS25LA

dynamometer is a lightweight, ergonomic force measurement unit that can record forces

in the range of 0-50 kgf (Kilogram-force). It is equipped with a 3 metre long cable that

allows the easy movement and positioning of the force sensor away from the recording

unit. The dynamometer can be connected easily to one of the four electrode channels (CH

input channels) located on the front of MP36 unit. The transducer can provide direct

output in pounds or kilograms and only requires a very simple calibration. The MP36

can record inputs from the transducer at a sampling rate of 100 KHz with 24-bit A/D

sampling resolution. Figure 3.2 shows the data acquisition unit and the dynamometer.
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Figure 3.2: Force measurement setup containing a SS25LA dynamometer plugged into

CH1 electrode channel of a Biopac MP36 data acquisition unit.

3.3 Robotic Grippers and Hands

A number of robotic grippers and hands were used for collecting robotic data as well

as for comparison against human grasping and manipulation capabilities. These grippers

and hands are discussed in this section.

3.3.1 Parallel Jaw Gripper

A simple parallel jaw gripper as seen in Figure 3.3 containing two fingers that are

driven linearly utilising a rack and pinion system was designed within the New Dex-

terity Research group. It is operated by a single Dynamixel XM-430-W350-R that opens

and closes the grippers along the linear rails for enabling simple grasps. Each finger is

equipped with compliant finger pads that can conform to objects of various shapes to

enable robust grasping. This simple gripper with one DOF serves as the baseline robot

gripper mechanism for comparison against other grippers and hands.
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Figure 3.3: A simple parallel jaw gripper controlled by a single actuator.

3.3.2 NDX-A

Experimental protocols involving anthropomorphic hands were performed using the New

Dexterity, adaptive, human-like robot hand [12] developed within the New Dexterity re-

search group . This underactuated hand shown in Figure 3.4 is tendon-driven and utilises

5 actuators (Dynamixel XM430-W350) to control 15 degrees of freedom. One actuator is

employed to control the flexion of each finger, except for the ring and pinky fingers that

are coupled together using a differential mechanism. An additional Faulhaber DC mo-

tor and a non-backdrivable gearbox are used to control thumb opposition. The hand also

features compliant fingerpads and palm to facilitate object grasping and manipulation.

Figure 3.4: The new dexterity adaptive, human-like robot hand was used for analysing

dexterity of anthropomorphic grippers.
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3.3.3 Multi-Modal Gripper with a Rotary Module

This multimodal gripper developed by Geng Gao in the New Dexterity research group

combines a parallel-jaw element with a 3-fingered rotary module allowing the gripper to

perform a) pinch, b) extension, and c) rotation primitives in the execution of manufactur-

ing tasks [43]. The gripper presented in Figure 3.5 is controlled using three actuators (two

Dynamixel XM-430-W350-R, and one Dynamixel XL-320). The parallel jaw module is

comprised of a pair of modular fingers with compliant finger pads. It utilises a rack and

pinion mechanism to perform the pinch (Eg. picking objects for insertion tasks) and ex-

tension (eg. extending a belt with the back of the fingers) grasping tasks. The 3-fingered

rotary module on the other hand can perform grasping and rotation of the grasped ob-

jects using a scroll wheel mechanism. The potential errors encountered during the use

of rotary tool is compensated by implementing mechanical compliance along the axis of

rotation of the rotary module.

Figure 3.5: A multimodal gripper containing a simple 2-fingered parallel jaw module and

a 3-fingered rotary module.

3.4 Robot Interfaces

A number of interfaces were employed to control the robotic grippers in the performance

of various tasks. These interfaces can be mounted with various grippers and are equipped

with control interfaces such as sliders, trigger controls, selection button etc for real time

programming of the end-effectors. The mounting modules designed to accommodate

several cameras can be used for recording videos of grasping and manipulation strategies

performed by the grippers for analysis and evaluation.
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3.4.1 Palm Mounted Interface

The palm mounted interface seen in Figure 3.6 was designed by Jayden Chapman in

the New Dexterity research group [44]. This compact interface can be constrained in the

palm of the user by the ergonomic palm rest. The device is held in place by an adjustable,

elastic strap that allows holding the device in place without requiring support from any

fingers. The interface allows easy control of grippers with up to six actuators using a)

four linear potentiometer sliders controlled by the four fingers, b) a bidirectional joy-

stick, and c) a press button controlled by the thumb. The device is efficient in controlling

lightweight devices, and for shorter operation times. The interface can be customized for

both right and left-handed users, using a customizable palm pad and a trigger switch that

reconfigures the controls for the different handed users. The interface can accommodate

two RGBD cameras. The information that can be recorded using the interface includes

the camera feeds, control module outputs, and actuator data (position, velocity etc.).

Figure 3.6: A palm mounted interface equipped with a T-42 gripper. The interface allows

easy control of grippers using four linear potentiometer sliders controlled by the four

fingers, a bidirectional joystick, and a press button controlled by the thumb.

3.4.2 Forearm Mounted Interface

The forearm stabilized interface was designed by Che-ming chang within the New Dex-

terity research group and is presented in Figure 3.7 [44]. The arm module padded with
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clothed sponges supports the interface on the forearm of the user and can be secured in

place using Velcro straps. The ergonomic grip also contains three control modules: a) an

incremental encoder, a rotary potentiometer, and a push-button. These modules can be

used to control a maximum of six actuators individually or in parallel. The 3D printed

design of the interchangeable arm module (of different lengths) is customizable for indi-

vidual users. The entire interface can be supported by a passive, iso-elastic arm mounted

onto the waist structure. Hence, this interface can help overcome fatigue while operating

heavy grippers over a long period of time. The camera mounting plate on the interface

can accommodate a maximum of two cameras at different angles. The motor/gripper data

is parsed by an Arduino and get transmitted to the computer via encoded serial commu-

nication. The modular mechanical system and electronics allow the gripper to be adapted

to various grippers, actuators, and applications.

Figure 3.7: A forearm mounted interface equipped with a multimodal gripper. The inter-

face allows easy operation of heavy robot grippers or hands such as the NDX-A and the

multimodal gripper over a long duration of time.
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Chapter 4

Definitions and Taxonomies of
Dexterity

4.1 Introduction

Dexterity and dexterous hands are the most common terms associated with studies in-

volving robotic grippers and hands. The objective of most of these studies is to develop a

robotic end-effector with improved overall dexterous capability or task specific dexterity.

However, there has been very little understanding about the means to impart dexterity to

a specific set of grippers [45]. This might be attributed to the fact that many researchers

assume and attribute dexterity to highly functional, human-like hands with high DOF

[32]. Owing to this reason many researchers characterize their end-effectors as dexterous

without assessing the actual level of dexterity and/or benchmarking them against similar

devices and humans. Hence it is important to properly define the term dexterity, iden-

tify the boundaries of the term, and attributes that directly contribute towards improving

it. In this chapter, we provide the commonly accepted definitions for the term dexterity

with respect to humans and robots. We also identify the attributes that are responsible

for the specific classes of dexterity. The rest of the chapter is organized as follows: Sec-

tion 4.2 discusses the various attributes of human dexterity and defines the term. The

unique features of the human hand anatomy that contribute heavily to its high dexter-

ity are presented in section 4.3. The various definitions and attributes of robot dexterity

presented in the literature are discussed in section 4.4. Grasping and Manipulation strate-

gies employed by the human and robot hands are discussed in section 4.5.1 and 4.5.2

respectively. Section 4.6 concludes the chapter.
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4.2 Human Dexterity

The human hand is considered the most dexterous end-effector as it is capable of per-

forming a diverse set of tasks across various environments and settings, serving as a

general purpose manipulator [45]. The range of objects that can be manipulated by a hu-

man hand varies over a huge range of sizes, shapes, and other object properties. The level

of precision obtainable by the human hand and the ease with which they are performed

are also impressive [27, 23]. This range of tasks and precision is obtained by a combina-

tion of gross and fine voluntary movements executed by the human hand. All these skills

of the human hand can be improved through training, learning, and experience, enabling

them to perform the tasks with further ease in a shorter duration of time [22]. Some of

the most commonly used definitions of human dexterity are presented in Table 4.1. As

shown in the table, most human studies consider dexterity as a measure of functionality

and task completion capability of the human hands. Owing to this, human dexterity mea-

sures are used to measure the degree of improvement or deterioration of functionality in

rehabilitation post injuries or stroke [46]. They have also been used to evaluate manual

dexterity in workers required to perform specific industrial tasks like assembly, packing,

and operating specific machines, and also for surgeons who require a high level of dexter-

ity and precision. Deriving from these studies, we define human dexterity as "The ability

of the hand to perform with ease a diverse set of complex tasks that require increased

skillfulness and that involve objects of varying properties irrespectively of changes in the

environment and other external conditions and disturbances."

4.3 Human Hand Anatomy

The human hand is considered to be Nature’s most dexterous end-effector and owes many

of its capabilities to its anatomical design. Like any good design, the human hand has un-

dergone numerous iterations of evolution over millions of years and has been optimized

by nature. The key features of the human hand anatomy detailing its kinematic structure,

the available degrees of freedom, and the range of motion of each joint are presented

here.

4.3.1 Anatomical Features of Human Hand

One of the key features of the human hand that separates it from the hands of other or-

ganisms is the robust long thumb relative to the length of the fingers. The human hand is

made up of 27 bones. Each finger(except the thumb) consists of 3 phalanges: the prox-

imal, middle, and distal phalanx. The distal phalanges form the tips of the finger and
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Table 4.1: Definitions of human dexterity commonly presented in literature and related

attributes are presented in this table.

Study Definitions of Dexterity Attributes

Poirier, 1988

[22]

“Manual ability requiring rapid coordination of gross

and fine voluntary movement, based on a certain

number of capacities that are developed through

learning, training, and experience.”

Functionality, Gross

& Fine motor Control

Backman et al, 1992

[27]

“fine,voluntary movements used to manipulate small

objects during a specific task, as measured by time

required to complete the task.”

Functionality, Task

completion capability,

Fine motor control

Latash et al, 1994

[23]

"The ability to adequately solve any motor task...

precisely, quickly, rationally and deftly."

Functionality, Task

completion capability

Canning et al, 2000

[24]

"Skill and ease in use of the hands, but is also

defined as adroitness and competency in use of the

limbs and body generally, especially in the

performance of a task."

Functionality, Task

completion capability

Lawrence et al, 2014

[47]

"The sensorimotor capability to dynamically regulate

fingertip force vectors and motions to stabilize an

unstable object."

Force modulation,

Motion modulation,

Sensory feedback

Yong et al, 2020

[28]

“the co-ordination of voluntary movement to

accomplish an actual or simulated functional

goal/task accurately, quickly, resourcefully

and adapting to environment or change.”

Motor control, Task

completion capability

have prominent broad apical tufts that facilitate better manipulative control. The prox-

imal phalanges are located closer to the palm. All the fingers except the thumb have a

middle phalange in between the distal and proximal phalanges. The phalanges are at-

tached to each other by hinge joints. These joints are called the proximal interphalangeal

(PIP) joint and the distal interphalangeal (DIP) joint. The thumb has only one joint which

is called the interphalangeal (IP) joint. The fingers are connected to the base of the wrist

through the long and slender metacarpal bones that are attached to the proximal pha-

langes by the metacarpophalangeal joint (MCP). The I metacarpal bone connects the

thumb, the II metacarpal connects the index, the III metacarpal connects the middle fin-

ger, and so on. The head of the metacarpals is attached to the proximal phalanges through

a condyloid(oval) joint that helps articulate the finger bases. These condyloid joints allow

360-degree motion of the fingers at their bases. The articulation of the metacarpals en-

ables the folding, stretching, and compressing of the palm. The wrist is made up of a set

of 8 carpal bones that are arranged in two rows of four each. The metacarpal bones are

attached to the carpal bones in the distal row by the carpometacarpal ligaments. The fifth

carpometacarpal joint is saddle-shaped, allowing the metacarpal bone of the little finger

to rotate towards the thumb. On the palmar side, the carpus is concave, forming a canal

known as the carpal tunnel. The nerves, tendons, and ligaments extend into the palm

from the forearm and wrist through the carpal tunnel. The proximal row of the carpal
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bones is rounded and forms a flexible wrist joint with the bones of the forearm - ulna

and radial. The rotation of these bones about the proximal radioulnar joint at the elbow

results in the pronation and supination of the forearm. The muscles in the forearm enable

the movement of the bones of the forearm and wrist. They also facilitate the flexion and

extension of the phalanges by pulling on long tendons that run through to the fingers via

the wrist and hand.

4.3.2 Degrees of Freedom (DOF)

The sophisticated anatomy of the human hand has endowed it with 29 degrees of freedom

(DOF). Each finger (except the thumb) has four DOF. Three of these are flexion/extension

at the MCP joint, PIP joint, and DIP joint respectively, and the fourth DOF is the adduc-

tion/abduction at the MCP joint. The thumb owing to its complex joints at the base has 5

DOF. Two for flexion/extension at the MCP and IP joints. The saddle joint at the base of

the thumb accounts for 3 DOF: one for flexion/extension, one for adduction/abduction,

and one for lateral and medial rotation. The metacarpal bones (II through V) of the palm

are also endowed with two degrees of freedom each. One each for flexion/extension and

one each for adduction/abduction. These extra DOFs enable the repositioning of the fin-

ger base frames and the thumb to oppose the other fingers. The opposable thumb and

repositionable finger base frames are unique features that provide the human hand with

the ability to perform pinch grasps with high precision. This allows the human hand

to perform in-hand manipulation over an incredible range of objects. These are the key

components that contribute toward rendering the human hand as Nature’s most dexterous

end-effector.
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4.3.3 Range of Motion

The normal range of motion observed for each joint of the human hand as presented in

the electronic textbook of hand surgery [48] is presented in Table 4.2.

Table 4.2: Normal range of motion for the human hand

Range of Motion for Human hand DOF
Joints DOF Range (degrees)

DIP joints Extension/Flexion 0/80

PIP joints Extension/Flexion 0/100

MCP joints HyperExtension/Flexion 0-30/90

Thumb IP joint HyperExtension/Flexion 15/80

Thumb MCP joint HyperExtension/Flexion 10/55

Thumb Basal joint
Palmar Adduction/Abduction Contact/45

Radial Adduction/ Abduction Contact/60

Wrist
Extension/Flexion 70/75

Radial/Ulnar 20/35

4.4 Dexterity of Robotic Grippers and Hands

There are numerous definitions of dexterity put forth and applied across the various

robotics research studies. Some of the most commonly utilized definitions are presented

in Table 4.3. Some of these definitions provide a very general statement like "the skill in

the use of hands" [26] and do not provide any insights as to how it can be achieved. And

some defined dexterity with respect to specific task environments. For example, Holler-

bach defined dexterity as "a feature that would make assembly lines more adaptive and

flexible, reducing the need for custom fixtures in each assembly task" [49]. Most stud-

ies associate dexterity with kinematic redundancy [29] and consider it a necessity for

the robot fingers to reach arbitrary orientation and exert forces across a given workspace

[50]. A majority of the robotics research defines dexterity as an object-centered task ex-

ecution capability. They define dexterity as a characteristic of the robotic gripper that

would allow it to grasp and manipulate the objects between multiple configurations [51].

The most commonly applied definition, as described by Bicchi et al is "The capability

of a robot hand to change the position and orientation of the manipulated object, from

a reference configuration to a different arbitrary chosen configuration, within the hand

workspace" [5]. Recent studies have shown that interactivity among the robotic fingers

is an important attribute that contributes towards object manipulation. Along these lines,

robotic dexterity can be defined as the capability of a given end-effector to effectively
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coordinate multiple manipulators or fingers to grasp and manipulate objects without los-

ing contact with the object for the execution of tasks [25, 52, 30]. Deriving from these

studies we define robot hand dexterity as "The combination of robust grasping and in-

hand manipulation capabilities of a robotic gripper or hand that allow it to successfully

relocate and reorient objects of varying properties from a given configuration to a target

configuration for the successful execution of complex tasks, irrespectively of changes in

the environment and other external conditions and disturbances."

Table 4.3: The most commonly used definitions of dexterity with respect to robotic grip-

pers and hands are presented in this table. The attributes of the end-effectors that con-

tribute towards the respective definitions of dexterity have also been identified.

Study Definitions of Dexterity Attributes

Hollerbach, 1982

[49]

"A feature that would make assembly lines more adaptive

and flexible,reducing the need for custom fixtures in

each assembly task."

Functionality, Task completion

capability, Kinematic dexterity

Klein et al, 1987

[29]

"The kinematic extent over which a manipulator can

reach all possible orientations."

Kinematic dexterity,

Optimized Workspace

Li et al, 1989

[51]

"The process of manipulating an object from one grasp

configuration to another."
Kinematic dexterity

Sturges et al, 1990

[26]
"The skill in the use of hands."

Functionality, Task completion

capability

Park et al, 1994

[50]

"Ability to move and apply forces in arbitrary directions as

easily as possible."

Force modulation,

Kinematic dexterity,

Optimized workspace

Bicchi, 2000

[5]

"The capability of a robot hand to change the position and

orientation of the manipulated object, from a reference

configuration to a different arbitrary chosen configuration,

within the hand workspace."

Kinematic dexterity,

Optimized workspace

Okamura et al, 2000

[25]

"The cooperation between multiple manipulators or

fingers, to grasp and manipulate objects."
Interactivity of fingers

Bicchi et al, 2002

[52]

"The ability of a hand to relocate and reorient an object

being manipulated among its fingers, without losing

the grasp."

Interactivity of fingers,

kinematic dexterity

Suarez et al, 2006

[30]

"A grasp is dexterous if the hand can move the object in

a task-specific way, or for the general case that the task

specifications are not provided when it is able to move

the object in any arbitrary direction."

Kinematic dexterity, Optimized

Workspace, Task completion

capability

4.5 Grasping and Manipulation

Each study approaches the dexterity of robotic grippers differently and characterizes dex-

terity to different attributes. In general, dexterous manipulation could be considered as

a sequence of events to be performed by a robot for the accomplishment of a task. This

includes the planning and execution of establishing the contact points on the object, ex-

erting forces on these contact points for restricting the object’s motion, and motion of

the robot fingers/arms to enable the movement of the object from the current configu-

ration to a desired target configuration for the successful task execution [25]. In simple
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terms, dexterity is a combination of robust grasping and effective manipulation. Hence,

a number of research has been done to classify the grasping and manipulation strategies

with the intention to derive the optimal approaches for robots [5, 53, 54]. These studies

have analyzed grasping and manipulation providing us with object-centric [55], force-

centric [56], hand-centric [38], and motion-centric [8] classification. A brief explanation

of the characteristics of grasping and manipulation strategies employed by the robotics

community is presented here.

4.5.1 Grasping

Grasping can be defined as the act of restraining an object’s motion using the hand con-

figuration and force/torque modulation [57]. Feix et al defined "A grasp is every static

hand posture with which an object can be held securely with one hand, irrespective of

the hand orientation" [38]. This definition of grasp has been used to classify the various

postures of the hand based on a) the nature of grasp (power or precision), b) Thumb

position, c) Opposition types, and d) functional units of fingers (Virtual Fingers).

The nature of grasp is determined based on the activity to be performed with the

grasped object and has been classified into three main categories: power, precision, and

intermediate. The power grasp establishes a rigid hand-object relation that restricts the

object motion completely, and any movement needs to be imparted from the arm [58].

Contrarily, the precision grip enables the object motion through intrinsic finger move-

ments [58]. And one of the most commonly used taxonomies established by cutkosky

classified the grasps into one of these categories [37]. However, some of the grasps ob-

served did not fit into either of these categories and a third category called intermediate

grasp has been introduced [59]. The intermediate grasp exhibits equal characteristics of

power and precision grasp. Further classification has been proposed based on the position

of the thumb. There are two main categories in this classification: abduction and adduc-

tion. Abduction is when the thumb moves out of the plane from the palm and opposes

the fingertips. During adduction, the thumb remains in the same plane as the palm and

can apply forces to the side of the fingers.

Another main feature used for categorization classifies the grasps based on three

basic directions of force exertion on the object [60]. In the first category, called the palm

opposition, the forces are exerted between the surfaces of the hand and palm (generally

perpendicular to the palm) like holding a large bottle, hammer etc. In pad opposition,

the forces are exerted between the volar surfaces of the fingers and thumb like holding

a pen, small object etc. If the opposition occurs between the side surfaces of the hand

transverse to the palm, it can be classified as side opposition. Examples include holding a
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key between the side of the finger and thumb. Furthermore, the fingers, thumb, and palm

often perform in combination with each other, called functional units. Each of these

functional units has been described as a virtual finger (VF) made up of a number of

fingers (one or more) exerting forces in a similar direction in unison [61]. For example,

if an object is being held against the palm by the four fingers, the palm acts as VF1

and the four fingers act as a single functional unit VF2. The object is stabilized between

these two functional units. Such grasps, where the object can be stabilized by the forces

exerted by the hand alone, are often termed prehensile and require a minimum of two

VFs. On the other hand, the grasps where objects are stabilized using one VF (or more)

and external conditions (like gravity) are classified as non-prehensile. Examples include

holding a plate with an open palm where the plate is stabilized using one VF and gravity.

A number of grasp taxonomies have been proposed in the literature that classifies

grasping based on one or a combination of the categories described above. The most

commonly used taxonomy in the field of robotics was the one proposed by cutkosky,

which presented a hierarchical classification of 15 different grasps [37] and has been

commonly employed by various robotic hands for design/evaluation. More recently, Feix

et al had compared over 22 taxonomies, identified the similarities between the various

classifications, and presented a new systematic categorization of the grasps in a new tax-

onomy [38]. The comprehensive taxonomy captured 33 different prehensile grasps in

which the objects can be secured solely based on hand posture. Apart from this, humans

also employ a number of non-prehensile and dynamic grasps for stabilizing objects for

the purpose of restriction and motion. These taxonomies have been used to compare the

gripper capabilities by classifying grippers that can successfully execute more number of

grasps as more dexterous [36]. However, despite this variation in the types of grasp, hu-

mans only employ a small fraction of grasps during daily work activities. It was identified

that the humans employed only five grasps during household and ten grasps during ma-

chine shops for the completion of 80% of the tasks [62]. This provides valuable insight

for the design of robotic end-effectors that a majority of the tasks performed by humans

can be executed successfully with the limited number of grasps specifically designed for

a given task category. And the number of grasps that a gripper can successfully execute

can no longer be an indication of its dexterity.

4.5.2 Manipulation

Manipulation can be defined as the process of moving an object from one configuration

to another using the motion of robotic fingers, hands, or arms. In most situations, task

completion requires an object to be translated and/or rotated about a predefined axis
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while being restricted by a robot hand. Studies have decomposed the tasks into a set

of primitive actions that the gripper needs to execute in sequence [63, 64]. These could

include the free motion of the robotic hand to posture the fingers, establishing a stable

grasp, lifting the grasped object, rotating the object about an axis, and redistribution of

forces to enable in-hand manipulation etc [65, 66]. The ambiguity in these manipulation

actions being effected by the "hands" as opposed to the manipulator "arm" has been a

topic of discussion in the field of dexterous robotic manipulation [21]. In most cases, a

simple gripper capable of stably grasping a number of objects can accomplish a wide

range of tasks using arm dexterity [21]. Even in cases where the object is grasped in a

different orientation owing to restricted environment/space, the desired end configuration

can be obtained through a sequence of grasping-regrasping strategies [67].

However, hand dexterity where the object motion is a result of the reconfiguration of

the hand/fingers can increase the workspace of the arm-hand system, especially at arm

singularities and obstacles. The energy required to accomplish a task within the hand

is much lower compared to tasks requiring arm motions. Hence, some level of hand

dexterity is preferable for finer movements. And a combination of the arm (for large-

scale positioning, higher force-torque exertion) and hand (for finer positioning, precision

handling) is necessary for obtaining optimal manipulation capabilities. Some of the com-

monly observed in-hand manipulation techniques include: a) regrasping- where an object

is released and regrasped to change the orientation of the grasp [67], b) in-grasp reori-

entation - where fine changes in finger configuration enable change in object orientation

using redundancy in finger space, c) finger gaiting - replacing fingers that have reached

joint limits with free fingers to extend the kinematic limitation [68], d) finger pivoting -

where an axis of rotation is determined by two-point contacts (fingers) and a free finger

rotates the object about this axis [69], e) slipping - where the object is manipulated by

using controlled slip [70], and f) rolling - easily achievable non-prehensile manipulation

that can be achieved for certain object geometries [71].

A number of taxonomies have classified manipulation behaviours for the purpose of

transferring the classified characteristics to robot hands [72, 73]. The classification has

been approached from an object-centric [63], force-centric [56], and hand-centric view

[74, 75]. These approaches help determine the tasks differently enabling the robots to

formulate strategies for the completion of the task. For example, an object-centric clas-

sification would define the activity of opening a bottle cap as the rotation of the cap

along the axis of the bottle and lifting it upwards. However, the same can be defined

from a hand-centric view in multiple ways. One approach could be turning the object

using in-hand manipulation of fingers, while another could be grasping the cap firmly
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and performing the action using a manipulator arm. One of the most widely employed

taxonomies proposed by Bullock et al involves the hand-centric and motion-centric clas-

sification of tasks that help identify the manipulation strategies [8].

This hierarchical categorization is based on contact condition, grasp category, ob-

ject motion, and hand-motion relationship. The manipulation is said to have established

contact if the hand or any parts of it touches an external object. Actions such as hand

movements, sign making etc are classified under no contact while all tasks require the

hand to establish contact with the object for manipulation. The type of contact estab-

lished is classified into prehensile and non-prehensile categories as defined in the grasp

taxonomy. Once this has been established, the manipulation further evaluates if the object

is in motion with respect to the world frame. While most manipulation requires object

movement, certain tasks require the objects to be stabilized before manipulating a part of

the object. Examples could include stabilizing a bottle with one hand prior to opening the

bottle cap. If the object is in motion, we determine if the motion occurs within the hand or

external to the hand. Thus, a set of 15 manipulation strategies are defined in the taxonomy

to represent the various classes of hand-centric and motion-centric manipulation.

This taxonomy has been employed by studies to identify the manipulation strategy

employed by humans and mimic them with a robotic end-effector for specific tasks [76].

And since the classification is not anthropometric, it can be used to analyze the ma-

nipulation strategies employed by the general arm-hand system of robotic grippers and

hands. Though the taxonomy helps classify the high-level taxonomy for task execution,

additional categorizations and inputs need to be derived from other classification tax-

onomies to compensate for the finer details such as objects being interacted with or the

hand configuration etc. And often times, the manipulation strategy employed by humans

is personal choices obtained through practice, ease of use, or habitual. Hence, the tasks

could be completed by the robotic end-effectors by employing alternate strategies.

4.6 Conclusion

In this chapter, we address the ambiguity associated with the term dexterity and the lack

of standardized methods to quantify, compare, and impart dexterity to various grippers.

The various definitions and attributes of the human hand that make it the nature’s most

versatile and dexterous end-effector are identified. The human dexterity can be defined

as "The ability of the hand to perform with ease a diverse set of complex tasks that

require increased skillfulness and that involve objects of varying properties irrespec-

tively of changes in the environment and other external conditions and disturbances". The



Conclusion 31

anatomical and kinematic features of the human hand that contribute towards achieving

this high level of functionality are detailed. We also analyzed the various definitions of

robot dexterity put forth in the literature and the qualities it is attributed to. Based on

this, we propose that the dexterity of a robotic end-effector can be described as "The

combination of robust grasping and in-hand manipulation capabilities of a robotic grip-

per or hand that allow it to successfully relocate and reorient objects of varying properties

from a given configuration to a target configuration for the successful execution of com-

plex tasks, irrespectively of changes in the environment and other external conditions

and disturbances". Hence, the dexterity of a gripper is a cumulative outcome of its abil-

ity to establish contact points on the object, exert forces to restrict object motion and

move the object to a target configuration using the motion of fingers/arms. This could be

simplified as robust grasping and effective manipulation. The most commonly employed

taxonomies and classification methods used to analyze the grasping and manipulation

strategies of humans and robots are also presented. We have utilized these taxonomies to

analyze the current human/robot performance as well as map the performance capabili-

ties of humans to robots in this study.





Chapter 5

Comparison of Benchmarking
Tools, Dexterity Measures, and
Metrics

5.1 Introduction

Over the last decade, a lot of research effort has been put into the development of dex-

terous robotic grippers and hands. However, the lack of common metrics, benchmarks,

and scores prevents quantification and comparison of robot dexterity. One of the primary

reasons for this is the diverse design features available for robotic grippers that can be

varied to create a plethora of robotic end-effectors ranging from simple parallel-jaw grip-

pers to anthropomorphic hands. Even among grippers of a specific design structure, the

grasping and manipulation strategies depend on a wide number of parameters such as

actuation methods, sensing capabilities, control algorithms etc. Hence there is a need to

quantify dexterity based on standardized dexterity metrics and/or a scoring system that

encompasses all sets of robotic grippers irrespective of their design parameters. The need

for such a quantification framework has been identified and listed by the US National In-

stitute of Standards and Technology (NIST) in a roadmap that discusses the progress of

measurement science in robotic dexterity [77].

The dexterity of a robotic gripper is the cumulative effect of two major components:

i) The hardware components and ii) the perceptive system. The gripper’s physical prop-

erties such as the mechanical design, the force exertion capabilities, available degrees of

freedom, frictional properties etc., are determined by the hardware components that make

up the hand and directly affect the gripper performance. The planning and control of the

33
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robotic system are attributed to the effectiveness of its perception system that captures

and analyzes the data captured from the robot’s surroundings/environment. The compar-

ison of the effectiveness and efficiency of various grippers requires standardized testing

platforms and tasks that are reproducible and scalable to multiple platforms[78]. This

standardization can be implemented in the hardware, software, object sets, and/ or tasks

used for the benchmarking. The critical requirement of these tests is measurable metrics

and replicable results, enabling the comparison effective. These performance metrics al-

low us to compare the functional and task execution capabilities of the grippers [79].

A number of such benchmarking systems have already been proposed and involve

the execution of a variety of tasks under varying circumstances. These can be broadly

classified into component benchmarking and system benchmarking. While component

benchmarking tries to evaluate a particular component of the robotic gripper, the system

benchmarking tests evaluate a robotic system as a whole, taking into consideration the

interactions between the components including the robot design, perception, and control

among others. A benchmarking system usually defines a structured/randomized test en-

vironment, standardized object sets that cover an extensive range of shapes and sizes,

initial and final object configurations, the procedure to be followed for the completion of

a task and a success metric used to evaluate the performance [80]. Benchmarking scores

are usually expressed in terms of i) probability of success and ii) time taken for task com-

pletion. The computed benchmarking scores can be used to compare the task completion

capability of a given gripper against established standard tasks and time frames. Hence,

a comprehensive benchmarking system with diverse environmental conditions is neces-

sary to evaluate a wide range of grippers and their ability to perform different grasping

and manipulation tasks. For example, the YCB benchmarking system provides a com-

prehensive list of daily living objects of varying size, shape, weight, and texture as well

as a number of grasping and manipulation tests have been established using this set of

objects [81].

Apart from these benchmarking measures, a number of performance indices have

also been proposed in the literature to optimize the designs and dexterity analysis of

robotic grippers/hands. These indices are used to measure the performance, accuracy,

and success rate of the robotic systems. Some commonly used kinteostatic measures

like the manipulability ellipsoids, condition number, isotropy etc., are based primarily

on the jacobian matrix. The most widely used index among these is the manipulability

ellipsoid, which provides the ability to perform motion in any arbitrary task direction and

the correlation between the joint velocities and the end-effector velocity. Another similar

index called the manipulability force ellipsoid, evaluates the force/torque transmission
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from the joints to the end-effector using the jacobian. There have also been more recent

and complex metrics such as the capability map and task completion metric that are

independent of the jacobian but can be used to analyze and quantify dexterity.

In this chapter, we present the various metrics and benchmarking assessments avail-

able for the evaluation of robotic grippers along with the advantages and disadvantages

of each. The remaining of this chapter is organized as follows: Section 5.2 presents the

various commonly used benchmarking methods and the various metrics used for analyz-

ing dexterity are presented in section 5.3. The comparison of these metrics, advantages,

and disadvantages is discussed in section 5.4, and the conclusion is presented in section

5.5.

5.2 Benchmarking

While the evaluation of robotic grippers lacks a commonly accepted dexterity metric, a

number of benchmarking assessments that evaluates the execution of a variety of tasks

under varying circumstances are available. These evaluation tests can be broadly clas-

sified into component benchmarking and system benchmarking. In component bench-

marking, the goal is to evaluate a specific capability of the gripper like perception, control

strategy, sensing capability, and force exertion capability among others. System bench-

marking, on the other hand evaluates the robotic system as a whole, taking into consid-

eration the interactions between the components including the robot design, hardware,

and/or software capabilities in the successful execution of a task. In this section, we dis-

cuss some of the benchmarking tests and environments that are most commonly used for

the evaluation of robotic grippers.

5.2.1 Benchmarking Standardized Objects

In order to successfully evaluate the manipulative dexterity of robotic hands, it is neces-

sary not only to execute a number of dexterous manipulation tasks but also to examine a

plethora of different object shapes and sizes. However, most of the manipulated objects

have been generally found to share similar characteristics [82]. Feix et al. had corrobo-

rated this fact based on an analysis of video data of daily activities that were executed

by household workers and machinists. Most of the objects manipulated by these workers

had a weight of less than 500 grams and required a grasp width of less than 70 mm[83].

Hence, the objects used for benchmarking framework may be limited in size and shape

adhering to these standards.
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Figure 5.1: This figure presents some of the commonly available object sets for bench-

marking grasping and manipulation in literature. The image shows objects proposed in

the: a) YCB object set [84], ACRV picking benchmark [85], Robocup@home [86], Ama-

zon shelf picking challenge [87] and Modular, Sensorized objects [88].

One of the most prominent benchmarks used for the evaluation of robotic grasping

and manipulation is the YCB benchmarking system that has provided an extensive set

of standardized objects as shown in figure 5.1a and associated models to facilitate repli-

cable research and evaluation [81]. A benchmarking protocol can be developed using a

subset/all of these standardized objects. A number of evaluation protocols and bench-

marks have been proposed using the YCB object set to evaluate various grasping and

manipulation capabilities of robotic hands and grippers [89, 90]. Robotic competitions
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and benchmarks have also proposed standardized objects specific to the features of eval-

uation protocols. The Amazon Picking Challenge[91] presented the participants with a

physical object set that needed to be used for shelf-picking tasks as shown in figure

5.1d. Similarly, the ACRV benchmarking defined a set of 42 commonly available objects

shown in 5.1b for shelf-picking tasks deriving from the first Amazon Picking Challenge

[85]. On the other hand, Robocup @ home competition that involves object recognition

and manipulation in home environments had 30 objects as shown in figure 5.1c catego-

rized into predefined categories that included tableware, cutlery, bags, Disks/books, can

be poured, tiny, heavy, and fragile objects among others [86]. Each object is located in a

location based on the object category. For example, the cutlery and tableware are located

on the kitchen table and the disks/books in a bookshelf, and the tasks involve recognizing

and manipulating the objects successfully.

Gao et al. presented a set of modular, sensorized objects equipped with various mo-

tion capture markers or sensors that facilitated object motion tracking for the assessment

of dexterous, in-hand manipulation capabilities as shown in figure 5.1e [88]. The key

feature of this object set is the modular objects can be used to develop variants of soft

and rigid objects with cavities that allow for the mounting of markers as well as the vari-

ation of the object weight. This allows the test conditions to be varied across different

contact conditions and weighted objects while the sensors allow pose tracking of the ob-

jects during the execution of the tasks. This provides an insight into the ranges of motion,

repeatability, and drift of the system.

5.2.2 Benchmarking Learning and Control Algorithms

A number of open-source simulation suites are available to compare the control strate-

gies and learning algorithms irrespective of their environments. Examples of such suites

include the Gazebo, ALE (Arcade learning environment), openAI gym etc. They enable

evaluation and comparison of various learning strategies and control algorithms inde-

pendently of any physical restrictions [92, 93, 94]. Gazebo is capable of reproducing an

accurate model of the gripper along with the environments it may encounter using virtual

sensors such as tactile sensor, force/torque sensor, and Kinect among others. Many stud-

ies have simulated manipulator designs and evaluated their task planning and execution

capabilities in gazebo [95]. Similarly, the openAI gym provides a diverse collection of

benchmarking tasks and environments with a common interface to compare algorithms.

The users can also compare the performance of their algorithms against other algorithms

through the openAI website. SURREAL is another open-source scalable framework that

includes a manipulation specific simulation suite called the SURREAL Robotics suite
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[96]. The suite allows importing new robot models and environments while provid-

ing a standard set of robot manipulation tasks with varying levels of complexity that

can be used for benchmarking and reproducible robotics research. PyRobot is another

open-source benchmarking system that supports Gazebo simulation primarily focusing

on hardware-independent APIs for robotic manipulation [97]. Another such toolkit that

enables the design, implementation, and deployment of robots to perform everyday ma-

nipulation activities is the CRAM (Cognitive Robot Abstract Machine) [98]. Some stud-

ies (ROBEL, REPLAB etc.) have also focused on developing a standardized hardware

system for the evaluation of control strategies and learning algorithms irrespective of

hardware limitations [99, 100]. These benchmarking platforms save valuable time re-

quired for the design and build of physical robots and enable evaluating the learning and

control algorithms required for robotic manipulation in parallel.

5.2.3 Robotic Competitions

A number of robotic competitions have also been organized in recent years with the in-

tent to evaluate different robotic platforms holistically on their ability to perform a set

of tasks sequentially in a given, fixed environment. For instance, 4 out of the 8 tasks

evaluated during the DARPA robotic challenge (DRC) involved manipulation as a key

element [104]. Figure 5.2a shows the course that evaluated the manipulation capabilities

of the robots from their performance of the door task, valve task, wall task, and a sur-

prise task that involved operating a button, electrical breaker switch etc., located within

a box [101]. The grasping dexterity test presented by ASTM international evaluates a

manipulator’s dexterity based on its ability to remove various blocks from an alcove

composed of 3 shelves[102]. These objects, not necessarily configured for the manip-

ulator are placed in different orientations as shown in figure 5.2b and the speed with

which the blocks are removed determines the overall ability of the manipulator. Another

significant grasping and manipulation competition that focuses on evaluating the dexter-

ity of robot grippers and hands based on benchmarking tasks is the Robotic Grasping

and Manipulation Competition of the IEEE/RSJ International Conference on Intelligent

Robots and Systems. The particular competition is being continuously organized since

2016 [105, 106]. These tasks are performed on a dedicated task board that incorporates

four representative classes of industrial assembly tasks[107]. Figure 5.2c shows the task

board of the manufacturing track of the robotic grasping and manipulation competition

at IEEE IROS 2019(Macau, China) comprising of the four classes of manipulation tasks:

fastener threading, insertions, wire routing, and belt threading & tensioning [43].
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Figure 5.2: A number of robotic competitions were organized over the years to evaluate

and standardize robotic grasping and manipulation capabilities. This figure presents the

experimental set-up for: a) DARPA robotic challenge [101], b) ASTM grasping dexterity

test [102], c) Manufacturing track of grasping and manipulation competition IEEE IROS

2019 [43], d) Robocup @ home [86], e) Amazon picking challenge [87], and f) World

robot challenge (WRC) partner robot challenge track [103].

Competitions are also being organized to evaluate the performance of the robots to

navigate and interact with a home environment by manipulating household objects. For

example, Robocup @ home competition that is organized by the Robocup initiative em-

ploys a set of benchmark tests to evaluate robot abilities and performance in manipulation

and human-interaction among others in non-standardized home environments that in-

cluded a bedroom, dining room, living room, and kitchen as shown in figure 5.2d [108].

The tasks varied widely and required the robots to perform a number of manipulation

tasks that involved moving tiny and heavy objects, pouring milk without spilling, load-
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ing dishes from a table into dishwasher etc [109]. Another competition that focuses on

the performance of robots in a domestic environment is the partner robot challenge (Real

Space) that is organized as part of the world robot summit[110]. Similar to the Robocup

competition, this challenge requires the robots to operate in a living room and dining

room set up to manipulate cluttered objects such as clothes, toys, plastic bottles, etc to

tidy up the room.

The Amazon Picking Challenge evaluated the shelf-picking capabilities of a robotic

gripper from a warehouse shelf. The task involved picking target objects from one of

the 12 bins of the shelf stuffed with varied objects as shown in figure 5.2e and placing

them in a storage container within a fixed amount of time [87]. Similar to this, the Ama-

zon Robotic Challenge (ARC) evaluates the capabilities of robotic grippers to pick and

stock objects in a semi-structured environment representative of the shelves in an Ama-

zon warehouse[111]. The effectiveness of the benchmarking competitions relies on the

experiments being carried out following identical experimental conditions and protocols.

While this may be organized at physical competitions, it is not possible for all labs to

achieve exact experimental conditions. The lighting, space, and environment of the setup

might vary across each lab. This might result in slight variations of outcomes. Leitner

et al proposed the easily replicable ACRV picking benchmark to overcome this limita-

tion. The test environment consists of a commonly available shelf, an object set, and a

detailed protocol that defines the position and orientation of the object placement de-

termined by stencils [85]. Other research challenges and progress with respect to recent

robotic grasping and manipulation competitions have been summarised in [112].

5.2.4 Human Dexterity Tests for Robotic Evaluation

The design parameters of the anthropomorphic design are limited to a certain extent as

they are designed to resemble the human hand. A plethora of well documented func-

tional and dexterity tests are available to assess the human hands [115]. Hence, a set of

standard manual dexterity and functional tests for human hands used in the medical and

industrial setups can be used to obtain comparative dexterity measures of anthropomor-

phic robot hands[116, 117]. Quispe et al adopted these tests for robotic dexterity and

classified these benchmark tests into three levels of complexity: physical, dexterity, and

functional [40]. These evaluation tests require objects of specific shapes and sizes to be

grasped/manipulated by the gripper hands to efficiently complete a set of tasks with speed

and accuracy for the evaluation of these tests. This helps evaluate the placing, turning,

and assembly capabilities of the gripper.
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Figure 5.3: The figure presents the various dexterity tests used for manual dexterity eval-

uation in humans presented in [113, 114]. More precisely, the tests are: a) Functional

dexterity test, b) Purdue pegboard test, c) Tweezers dexterity test d) Grooved pegboard

test, e) Minnesota manual dexterity test, f) Roeder manipulative aptitude test, and g)

Hand-tool dexterity test.

The simplest and most common assessment is the functional dexterity test (FDT),

also known as the peg board test. FDT consists of a peg board containing cylindrical pegs

arranged in holes. The speed and accuracy with which a hand can pick, reverse, and place

the pegs in the holes define its functional dexterity [118]. Variations of the peg board tests

require the gripper/hand to pick, manipulate, and place cylindrical pegs of sizes varying

from cylindrical pins (Tweezers dexterity test) to large cylindrical wooden pegs (Purdue

peg board test, Minnesota manual dexterity test) [119, 120, 121, 122]. Another variation

of the pegboard test, the grooved pegboard test involves grooved metal pegs that need to

be oriented along key shaped holes dispersed across the board in multiple orientations

prior to insertion [122]. Roeder manipulative aptitude test is another dexterity test that

focuses on finger dexterity and speed in manipulating four fine components: rods, caps,

bolts, and washers [123, 124]. The first phase of the test involves screwing a rod onto

the board followed by screwing a cap onto the rod within a fixed time period. The next

phase of the test requires adding a bolt and washer alternatively to the T-bar mounted on

the board. The score is calculated based on the number of tasks completed across both

the evaluation tasks. Furthermore, the hand-tool dexterity test can be used to evaluate

the hands’ ability to use tools such as wrenches and screwdrivers [125]. The apparatus
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consists of two upright walls with one wall mounted with nuts, bolts, and washers. The

time required by the subject to successfully move these components from one given wall

to the other determines the tool dexterity score. Figure 5.3 presents the various dexterity

tests used to evaluate and benchmark manual dexterity in humans that have been adapted

for the evaluation of anthropomorphic grippers.

5.3 Metrics and Measures

In robotic manipulation, the ability of the robot to reach optimal points, configurations,

and poses within the workspace of the robot determines its manipulative capabilities.

A robot capable of performing a task at these ideal points avoiding singularities and

degenerative is considered more dexterous. A number of metrics have been proposed to

quantify the manipulative capability based on the Jacobian, eigen values, eigen vectors,

and transformations of the manipulator. This section summarises such efforts to quantify

dexterity.

5.3.1 Metrics based on Jacobian and Manipulability

5.3.1.1 Manipulability Ellipsoid

The manipulability ellipsoid is the most commonly used and widely accepted metric

used for robotic dexterity. Though a number of dexterity metrics based on eigen values,

eigen vectors, similarity transformations, singular-value decompositions, and the Moore-

Penrose inverse of the manipulator Jacobian have been proposed in various literature

[126], the most common metric used to measure the manipulation capability of an end

effector is the manipulability measure proposed by yoshikawa [127]. It can be defined

as the "capacity of change in position and orientation of the end-effector given a joint

configuration". It can be used to calculate the end-effectors’ ability to perform a motion

in a given task direction and the velocity transmission from joint to task space in a given

direction. This measure indicates the distance to singular configuration and can be written

as shown in equation 5.1.

μ =
√

det(J(q)J(q)T ) = σ1σ2σ3...σn (5.1)

where J and JT are the jacobian and transpose of the jacobian at joint configuration q.

The equation shows that the measure can be written as the product of singular values

σ1,σ2....σn. This measure provides a manipulability ellipsoid that is spanned by the sin-

gular values of the jacobian and the resultant measure is proportional to the volume of
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the ellipsoid [128]. Hence, this measure can be used to determine the ideal postures for

robotic hands and fingers that are further away from singular configurations. Figure 5.4

shows the directional position and orientation variability of the end-effector for a given

joint configuration of the gripper. There are two common forms of manipulability ellip-

soids. The velocity ellipsoid is a measure/relationship of how the linear/angular velocity

is transmitted from the joints to the end-effector [127]. And the force ellipsoid measures

the transmission of force/torque from the joints to the end-effector [126].

Figure 5.4: Subfigure a) presents the manipulability ellipsoid that defines the directional

position and orientation variability of the end effector for a given configuration of the

gripper. Subfigure b) presents the force manipulability ellipsoid on the other hand that

defines directions with a maximum efficiency in terms of input/output forces

5.3.1.2 Condition Number

In [129], Togai had applied singular value decomposition and perturbation analysis to the

jacobian and introduced two new measures, "manipulability" and "sensitivity" based on

the condition number of the jacobian. The condition number can be computed using the

formula

c = cond(J) = |J||J−1| (5.2)

The term c in equation 5.2 provides manipulability of the gripper that is independent of

any scaling factors or the size of J and provides "nearness" to singularities. Equation 5.3

gives the function written in terms of singularities.

c =
σmax

σmin
(5.3)
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where σmax and σmin are the absolute maximum and minimum singular values. Hence, the

conditioning number is greatest when σmin is close to zero and the best manipulability

occurs when c = cond(J) = 1. The study also introduced another measure called the

velocity sensitivity sws
q given by equation 5.4 which can be defined as the ratio of velocity

variation in the workspace to the velocity variation in the joint co-ordinates.

sws
q =

(relative velocity change in workspace)
(relative velocity change in joint co−ordinates)

(5.4)

This measure is determined by the condition number of jacobian c, which determines

how the error in joint configuration is translated to the workspace. More precisely, the

inverse of the manipulability gives the lower bound of kinematic sensitivity given by

equation 5.5.

sws
q ≤ 1

cond(J)
(5.5)

5.3.1.3 Isotropic Indices of Jacobian

The isotropic indices measure is based on the manipulability ellipsoids and is the inverse

of the condition number. Even for a configuration of a gripper that results in a manipu-

lability ellipsoid with high volume, the velocity/force is not uniformly distributed along

all directions. For such conditions, the uniformity/isotropy of the ellipsoid provides more

insight into the capability of the gripper than the ellipsoid volume [130]. This quantifi-

cation is based on the singular value decomposition of the jacobian and is the inverse of

condition number as presented in equation 5.6.

Γiso =
σmin

σmax
(5.6)

where σmax and σmin are the absolute maximum and minimum singular values of the

jacobian. The best isotropic index is obtained when Γiso is close to unity signifying the

manipulator can transmit velocity uniformly along all directions. Hence, this measure

seems more significant compared to the volume of manipulability ellipsoids in determin-

ing the performance of a manipulator.

5.3.1.4 Manipulability Polytope

An alternate to the manipulability ellipsoid is the manipulability polytope that transforms

the polytope of the range of velocity space to a polytope in task space [131]. Unlike the

ellipsoids, the polytope is capable of transforming the joint constraints into task space by
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vector addition. If vi, j = 1,2, ...Nv represents the vertex of a polytope in n-dimensional

task space with Nv vertex, these vertices form a cone cell. The volume of the ith cone cell

is defined in equation 5.7.

Ki =
1

dn
|det([vk1 vk2.....vkn])| (5.7)

where dn is a constant determined by the dimension of the task space and [vk1 vk2.....vkn]

is a nXn matrix and the volume of the manipulability polytope can be calculated using

equation 5.8.

ωp = ∑Ki (5.8)

The two dimensional joint velocity spaces overlapped with jacobian row vectors and their

corresponding translation to the manipulability ellipsoid and polytope in the task space

is presented in figure 5.5.

Figure 5.5: Subfigure a) presents the 2-dimensional joint velocity spaces overlapped with

jacobian row vectors and subfigure b) presents the corresponding manipulability ellipsoid

Em and manipulability polytope Pm in the task space

5.3.1.5 Dynamic Manipulability Ellipsoid

The dynamic manipulability ellipsoid allows the calculation of end-effector acceleration

by taking into account the dynamic parameters of the gripper [126]. Taking into account

the arm dynamics under a given constraint, the ability of a gripper in positioning and
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orienting the end effector can be calculated by the ellipsoid formed by taking into ac-

count the set of all realizable end-effector acceleration. Unlike the simple manipulability

measure (μ) that measures the kinematic performance of the end-effector, dynamic ma-

nipulability measures its ability to generate acceleration from the joint driving force. The

calculation of the dynamic manipulability is shown in equation 5.9.

μd =
√

det[J(M.MT )−1JT ] (5.9)

where μd is the dynamic manipulability measure, J is the Jacobian, and M is the inertia

matrix.

5.3.1.6 Power Manipulability Ellipsoid

The above mentioned measures employ kinetostatic indices for the measurement of ma-

nipulability and are reliable for grippers that employ only rotational or translational

joints. However, the manipulability, condition number, or jacobian matrix indices may

not be employable in mechanisms made up of both translational and rotational degrees

of freedom due to the dimensional inconsistency among its elements. To overcome these

shortcomings, a new measure based on power has been suggested in [132] through a

power quadrivector expression given in equation 5.10.

�Si =

⎡
⎢⎣

Pi

�Qi

⎤
⎥⎦ (5.10)

where Pi represents the real power component and �Qi is a vector comprised of 3 compo-

nents of reactive power. This expression has been extended to calculate the total apparent

power of a mechanism that depends only on the power vector p as shown in equation

5.11.

S = ∑
k

Sk = pT (∑
k

4

∑
i=1

[Φi,kΦT
i,k])p (5.11)

where S is the total apparent power, the term [Φi,kΦT
i,k] is positive definite ensuring S is

always positive. The performance index can be formulated from this equation as follows.

pT (∑
k

4

∑
i=1

[Φi,kΦT
i,k])p ≤ 1 (5.12)

Equation 5.12 is the equation of an ellipsoid in power p space. The isotropy of this el-

lipsoid constitutes the power isotropy performance and its volume, the power volume
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performance index. This vectorial representation of power takes into account the orien-

tation of the articulation wrench along with kinematic transmission and states that the

articulation wrench needs to be oriented along the articulation axis for better manipula-

bility.

5.3.1.7 Normalised Manipulability Index

One of the key limitations of the manipulability measure is its unbounded nature. It pro-

vides the relative measure of the manipulator conditioning at a given point compared

to the other points in the workspace. Hence, the maximum manipulability index in the

workspace needs to be known in order to evaluate the value of a measure at any given

point. To overcome this limitation and make the manipulability index a bounded pa-

rameter, the normalized manipulability index(μn) as shown in equation 5.13 has been

proposed [31].

μn =
μi

max(μ1μ2μ3...μn)
(5.13)

where μi is the manipulability index as a given point i, and the term max(μ1μ2μ3...μn)

calculates the maximum manipulability index among all the points in the workspace.

5.3.2 Metric Based on Workspace

5.3.2.1 Workspace Index

One of the most commonly employed measures of a manipulator’s efficiency is the

workspace and a number of studies have focused on quantifying manipulator perfor-

mance based on the workspace [133, 134, 135]. The workspace of a robotic end-effector

is calculated primarily based on the kinematic structure, link lengths, and DOF. And this

provides vital information regarding the workspace boundaries, optimal placements to

avoid singularities, voids, holes etc that can be used for the analysis, design, and opti-

mization of the manipulator performance [133, 136]. Hence, in order to improve a gripper

performance it needs to have a well conditioned and dexterous workspace. The manipu-

lator performance varies across the workspace and is not uniformly distributed. This has

led to the classification of the workspace volume into two main categories: the reachable

workspace and the dexterous workspace.

The reachable workspace is the set of points that can be reached by the end-effector

with at least one orientation while the dexterous workspace is composed of a set of points

that can be approached from multiple orientations. The dexterous workspace is a sub-

set of the reachable workspace. While the most common metric used to quantify the
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workspace is the volume (area for planar manipulators) generated by the set of reach-

able workspace points, there have also been other measures such as the workspace index

used to quantify the workspace. In simple terms, the workspace index is a quantifica-

tion of the number of workspace points attainable by the manipulator without exceeding

physical limitations on the joints [137] and can be calculated using the equation 5.14.

WSI =
nws

nG
∈ [0,1] (5.14)

where WSI is the workspace index, nws is the number of feasible workspace points (with-

out exceeding physical limitations), and nG is the total number of points in the objective

workspace. This bounded index varies between 0 and 1, providing us with the percentage

of workspace dexterously achievable by the gripper.

5.3.2.2 Dexterity Index

Dexterity index is another performance measure that calculates the dexterity at a given

point within the workspace based on its ability to achieve varying orientations at the point

[138]. For a given point in the workspace, the manipulator orientation can be defined as

shown in equation 5.15.

Rxyz = Rx,γRy,β Rz,α (5.15)

where α,β ,γ are the yaw, pitch, and roll angles respectively and vary between 0− 2π .

The range of possible yaw (Δα), pitch (Δβ ), and roll (Δγ) angles about a given point

determines the dexterity indices about the particular axes. The dexterity index presented

in equation 5.16 is the summation of the dexterity indices about each of the axes.

D =
1

3

(
Δγ
2π

+
Δβ
2π

+
Δα
2π

)
(5.16)

This can be rewritten as given in equation 5.17.

D =
1

3
(dx +dy +dz) ∈ [0,1] (5.17)

where dx, dy, and dz are the dexterity indices about the X,Y, and Z axes respectively. This

bounded index shows that the points that can be approached from multiple orientations

have a higher dexterity index as opposed to points with unique solutions. A dexterity

index of 1 at a given point indicates that the end-effector is fully dexterous at the point.

Similarly, if one of the dexterity indices dx or dy is unity, the gripper can be considered to
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be X-dexterous or Y-dexterous respectively at the given point. Similarly, the mean dex-

terity over a given region of a workspace with N points can be calculated using equation

5.18.

DMean =
∑D
N

(5.18)

where DMean is the mean dexterity over the region with N points.

5.3.2.3 Capability Map

Figure 5.6: Capability map is formed by discretizing the workspace into a number of

cubes, sampling each cube and alloting a sphere whose diameter is the same as the di-

mension on the cube, discretizing the surface of the sphere with points N, and calculating

the inverse kinematics feasibility R

The ability of a human hand to grasp and manipulate objects depends heavily on its

posture, and the region of workspace where the object is located. These maps/models are

developed intrinsically by humans and are used in the successful grasp and manipulation

of objects by determining the location of the object on the map, the direction of grasp

approach, and the best posture for the task. Similar to this, the capabilities of a manipu-

lator in the robot’s workspace were shown to be structured and captured in a map called

the Capability map in [139]. This map is anchored to the arm base and indicates the

subspace within the workspace where versatile grasping and/or re-grasping is feasible,

thereby extending the manipulative capabilities of the gripper. It also helps determine the

direction of the grasp approach and path planning for a given task. This is achieved by
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discretizing the workspace into multiple cubes for task planning, randomized sampling

the configuration space, inscribing a sphere into each cube with N sampling points, and

calculating the inverse kinematics as shown in figure 5.6. Once this is achieved, the per-

centage of the sphere with an inverse kinematic solution is calculated using the formula

given in equation 5.19.

Ir =
R
N
.100 (5.19)

where Ir is the reachability index, R is the number of points on the sphere with inverse

kinematic solution, and N is the total number of points on the sphere. These spheres are

then colored based on the reachability index to create the Capability map based on shape

primitives. This map can be used to solve the positioning of the robot base, approach, path

planning, grasp/re-grasp, and effective manipulation resulting in dexterous manipulation.

5.3.3 Other Performance Metrics

5.3.3.1 Metric Based on Cartesian Pose Control Error

This metric is a kinematic measure used to quantify the in-hand manipulation capability

of a gripper. The metric calculates the control error between the desired and measured

object pose in the Cartesian space over a time varying trajectory. The resulting control

error is used to define the in-hand manipulation efficacy of the gripper [140]. Only the

pose of the object is used as a control variable and other dependencies such as finger

configuration and contact positions are not considered. The grasped Cartesian pose of the

object at initial time t0 is given by rc(t0) ∈ IR6x1. The hand is then required to manipulate

the object along as many of the 6 independent axes along a desired Cartesian trajectory

rcd ∈ IR6x1 which is given by equation 5.20.

rcd = [x,y,z,γ,β ,α] (5.20)

where x,y,z are translations and γ,β ,α are the rotations about the X, Y, and Z axes

respectively. The object needs to be translated and rotated along each axis in both the

positive and negative direction from the initial condition. An example of the desired time

varying cartesian trajectory is given in equation 5.21.

rcd,i(t) = Asin(2π f t)+ rc,i(t0)

f or i = 1,2, ...,6
(5.21)

where A is the magnitude of motion and f is the frequency expressed in motion cycles

per second, and t is the time in seconds. The total error etotal given by equation 5.22
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calculates the error between the desired pose and the actual pose of the object over time

for the duration of the test.

etotal = rcd − rc (5.22)

The Root Mean Square error of etotal , RMSEetotal gives the measure of the manipula-

tion efficacy of the gripper. The lower the value of this measure, the better the in-hand

manipulation capability of the gripper.

5.3.3.2 Metric Based on Task Completion

One of the most commonly used measures based on tasks is the stability and Mean picks

per hour (MPPH). These picks are characterized by three R’s: rate, reliability, and range

(class of objects) [80]. This has been written mathematically in equation 5.23.

E(ρ) = v∗q(mean over N grasp attempts) (5.23)

where E(ρ) is the mean picks per hour (MPPH), v is the mean grasp rate, and q is

the probability of success for given grasp attempts. And the mean grasp rate which is

dependent on the time taken for robot sensing (rs), computation(rc), and motion(rm) can

be written as shown in equation 5.24.

v =
1

(rs + rc + rm)
(5.24)

However, these metrics do not encompass the quality and success of the final task com-

pletion which is the primary goal of robotic manipulation. Along these lines, Ortenzi et

al had proposed a new metric that can adjudge the quality of the manipulation task by

embedding not just the features of grasping necessary for successful manipulation but

also dependent on the manipulation task [141] as shown in equation 5.25.

ρ = f (t)×g( fg,ug,yg, lg|t) (5.25)

where t is the task, f (t) is a boolean function that returns either 0(task failed) or 1(task

successful) based on task completion. fg is the grasping force, ug is the grasp velocity,

yg is the grasp type and lg is the grasp location. The term g( fg,ug,yg, lg|t) returns a value

between 0 to 1 based on how good the grasp contributes towards the outcome of the task

t. The function g is determined based on the output requirements of task t. For a task that

requires speed over accuracy, then the speed term ug will contribute more towards the

metric. This metric not only helps determine the quality of grasps/manipulation but also

helps in grasp selection that will benefit the manipulation task.
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Table 5.1: Summary of the various commonly employed metrics to evaluate

manipulation is presented along with the advantages and limitations.

Metric
Based

on
Jacobian

Description Advantages and/ Limitations

Manipulability

Ellipsoid
�

Arbitrary change in end-effector position and

orientation calculated for a given joint configu-

ration. Can be used to calculate postures

further away from singularity.

Capable of transforming i) linear/angular

velocity (velocity ellipsoid) ii) force/torque

(Force ellipsoid) from joints to end-effector.

Joint constraints not taken into account.

Condition

number of Jacobian
�

Provides manipulability of gripper based on the

conditioning number of Jacobian (J). Also,

captures how the error in joint configuration is

translated to workspace (sensitivity).

Provides manipulability and kinematic

sensitivity independent of scaling

factors of Jacobian.

Isotropic

indices of Jacobian
�

Calculates the uniformity/isotropy of ellipsoids

based on SVD of Jacobians. Shows how uni-

formly the gripper can transmit velocity/force

within the ellipsoids.

Provides more insight into the capability of

the gripper than the volume of ellipsoid.

Manipulability

polytope
�

Transforms range of polytope in velocity

space to a polytope in task space.

Capable of transforming joint constraints

into task space by vector addition.

Dynamic

Manipulability

Ellipsoid

�

Ellipsoid formed by set of all realizable end-

effector acceleration is used to determine the

ability of a gripper in positioning and orienting

the end effector.

Takes dynamic parameters of the gripper

into account to calculate the end-effector

acceleration.

Power

Manipulability

Ellipsoid

�

A power quadrivector is used to compute the

ellipsoid in power space. This ellipsoid is con-

stituted of the power isotropy performance and

power volume performance index.

Can be used in mechanisms composed

of a combination of translational and

rotational degrees of freedom overcoming

dimensional inconsistency.

Normalised

Manipulability

Index

�

Normalizes the manipulability of an

end-effector across all the points in

the workspace.

Converts manipulability into a bounded

measure.

Workspace

Index
�

Quantification of number of workspace points

attainable without exceeding physical

limitations of manipulator.

Bounded index that provides percentage

of dexterous workspace.

Dexterity

Index
�

Calculates the dexterity of points in

the workspace based on the orientation

angle range that can attain the specific points.

Can be used to calculate the dexterity

over a region of workspace based on

dexterity indices about individual axis.

Capability

Map
�

Structured grasping and manipulation capabili-

ties in a robot’s workspace is captured in a

map. By discretizing workspace into multiple

cubes, inscribing spheres into each cube with

sampling points and calculating inverse

kinematic solutions for each point.

This map indicates subspace within the

workspace where versatile grasping/

re-grasping is feasible. Also helps solve

direction of grasp approach and

path planning.

Metric based

on Cartesian pose

control error

�

Control error between the desired and

measured object pose in the Cartesian space

over a time varying trajectory is calculated.

The resulting control error is used to define

the in-hand manipulation efficacy.

Manipulation efficacy of gripper is

calculated using object pose as control

variable. Independent of dependencies like

finger configuration and contact positions.

Metric based

on task completion
�

A function based on the grippers grasping

force, speed, grasp type, and grasp location is

used to determine the ideal grasp for a given

manipulation task.

Can be used not only in grasp evaluation

but also in grasp synthesis for any given

task thereby increasing the probability of

success for a manipulation task.

5.4 Comparison and Discussion of Benchmarks and Metrics

The efficiency of a benchmarking system to compare various grippers relies on standard-

ization and reproducibility of i) Test environment/platform, ii) Object sets, iii) Task exe-

cution description, iv) Evaluation measures/scoring methodology. Most robotic competi-

tions and functional evaluation tests ensure standardized test environments by providing a

rig/platform on which the task is to be executed. While this ensures the reproducibility in
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terms of environment, the resulting benchmark restricts the object to a well-defined final

orientation that remains constant across all trials. And almost all of these test boards/rigs

are stationary. Thus the performance of the grippers on these platforms might not be an

indicator of real-life scenarios where the orientation of the object changes continuously.

Moving obstacles are also a major component in an industrial setting that has not been

replicated in these test environments. Exact environmental conditions such as lighting,

space etc., can not be replicated across all labs. While this might result in slight varia-

tions of outcomes, the robotic grippers need to be ultimately able to perform tasks across

various platforms and environments.

Most benchmarking systems provide standardized object sets and associated mod-

els that can be replicated efficiently. However, most evaluation tests are specific to a

limited range of object shapes and sizes. Benchmarking protocols must include a wide

range of objects shapes and sizes associated with everyday living and industrial settings

to enable a comprehensive benchmarking system. Incorporating objects with sensors as

proposed in [88] would allow pose tracking throughout the task execution allowing com-

parison of repeatability and drift. The Task description must provide sufficient details

regarding the initial and final position/orientation of the objects, task execution meth-

ods, and limitations if any to be followed during the task execution. For example, the

task description must include if the initial condition is structured/ random, followed by

the target final position/orientation, the sequence in which the test needs to be carried

out, and limitations like the workspace within which the task is to be completed. In

order to ensure the effectiveness of the benchmarking system, a set of standard operat-

ing and evaluation procedures need to be provided. The evaluation protocol must detail

what constitutes a successful task completion and the scores that need to be awarded

for complete/partial task execution, the penalty for mistakes during task execution etc.,

The evaluation methodology and scoring sheets must be provided to ensure the tests are

organized and scored under sufficiently similar conditions. Given the extensive variety

of robotic grippers and hands, there is a need for a common benchmarking platform to

quantify dexterity irrespective of the design parameters. Such a benchmarking platform

would allow a comparison of the various grippers and their dexterous manipulation ca-

pabilities.

A number of metrics have also been defined in literature to evaluate the grasping and

manipulation efficiency of robotic grippers. Kinetostatic performance indices like the

jacobian matrix, manipulability ellipsoids, and condition number have been employed

in several studies for dexterity analysis, trajectory planning, and design optimization

among others. These studies focus on various methods to identify the optimal config-

uration of the grippers by calculating the task execution capability of a manipulator in a
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given configuration and its "nearness" to singularity. Manipulability ellipsoid is the most

commonly used index that is used to determine how far a given configuration is from a

singularity. Further, the condition number of the jacobian can also be used to calculate

the "nearness" to singularity and compute optimal postures for grippers. While the vol-

ume of the manipulability ellipsoid provides a scalar value, the isotropic indices provide

better insights of the force/velocity transmission of the gripper by calculating the unifor-

mity/isotropy of the ellipsoids as the velocity/force is not uniformly distributed along all

directions. A limitation of the manipulability ellipsoid is its inability to transform joint

velocity constraints to the task space. This can be overcome by employing a manipula-

bility polytope that adopts a scaled jacobian matrix in place of a conventional jacobian

matrix enabling the transformation of joint constraints into task space by vector addition.

This also helps avoid the false optimal direction of motion in task space.

The set of all realizable end-effector acceleration is used to calculate the Dynamic

manipulability ellipsoid. This measure can help determine the ability of a gripper in

positioning and orienting the end effector taking the arm dynamics into account under a

given constraint. All of these measures employ kinetostatic indices for measurement and

can provide reliable results for grippers employing only rotational or translational joints.

To overcome this limitation and obtain meaningful results for mechanisms employing

both translational and rotational joints, the power manipulability ellipsoid can be used.

This measure employs a power quadrivector to calculate the ellipsoid in power space,

thereby overcoming dimensional inconsistencies as power has the same physical unit

in translations and rotations. One key limitation of the manipulability based measures

is their unbounded nature and the inability to provide an absolute measure. This can

be overcome by applying the normalized manipulability index that provides a bounded

measure of the end-effector’s manipulation capabilities.

The manipulator workspace is another key performance analysis measure used to

evaluate manipulator capability. The manipulator workspace provides insights about the

optimal placement of the manipulator that can help maximize the workspace volume.

Apart from the volume of the workspace, the conditioning of the workspace is important

for the efficient manipulation of the objects across all regions of the workspace. This

can be calculated from the workspace index that provides a ratio of dexterous workspace

points. Further, the ability of the gripper to reach the workspace points from varying

orientations can be calculated using the dexterity index. Another metric called the capa-

bility map stores the capabilities of the gripper in the various region of its workspace in

a structured map and helps successful manipulation by determining the locations of the

object on the map, the direction of the grasp approach, and the best posture for the given
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task. This map anchored to the arm base provides subspaces where versatile grasp/re-

grasp is feasible and can be used to plan the positioning of the robot base, path planning,

approach, and manipulation strategies resulting in dexterous manipulation.

Differing from the above kinetostatic measures, a recently introduced kinematic mea-

sure based on the control error between the desired and measured object pose in the carte-

sian space enables the quantification of the in-hand manipulation capability of a gripper.

The main advantage of this measure is its use of the pose of the object as the only de-

sign variable and dependencies such as finger configuration and contact positions are not

considered. Measures based on task completion in general evaluate grippers based on

mean picks per hour (MPPH) and the mean grasp rate ignoring the quality and success

of the final task completion. However, a recent metric based on grasp features like grasp

type, force, velocity, and grasp location taking into account the contribution of the grasp

towards the successful completion of a given task has been proposed in the literature.

Such a metric helps in grasp selection while also determining the quality of manipulation

capabilities in the successful execution of tasks.

5.5 Conclusion

In this chapter, we presented a comprehensive review of the most commonly used bench-

marking tools and manipulation metrics for the evaluation of robotic grippers and hands.

The benchmarking protocols can be used to evaluate various grippers based on their

performance under a standardized i) Test environment/platform, ii) Object set, iii) Stan-

dardised task execution, and iv) Evaluation and scoring methodology. This enables a

standardized scale for the comparison of various grippers independent of their design

parameters. However, most studies are limited by the object range being evaluated and

the fixed final orientation of the objects on a stationary rig. This is not representative of

real life home/industrial scenarios where there are often moving platforms and obstacles

requiring the gripper/hand to grasp/re-grasp and re-orient during the approach to com-

plete the task successfully. Hence, a comprehensive benchmarking system incorporating

the features of a wide range of object sets and tasks specifically designed for robotic

grippers with a dynamic platform would enable the ideal evaluation and comparison of

robotic grippers/hands.

On the other hand, a number of performance indices and measures of robot dexterity

such as the manipulability ellipsoids, manipulability polytopes etc., are used to evalu-

ate robotic manipulators. Most of these measures are dependent on kinetostatic mea-

sures like the Jacobian matrix, manipulability or condition number. The advantages, lim-

itations, and approaches used to overcome these limitations have also been discussed.
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The localised and bounded nature of these measures can be overcome by normalization,

employing a scaled jacobian matrix or metrics that are not dependent on the jacobian.

Manipulator measures used to evaluate the volume and conditioning of the manipulator

workspace can help in the ideal positioning of the bases that can help avoid singularities

and maximising the efficiency of the gripper within its workspace. These include met-

rics like the workspace index, dexterity index, and the capability map, that evaluate the

manipulative capabilities of the gripper at specific regions within the workspace. Stud-

ies have also focused on adjudging the quality of manipulation tasks by embedding the

features of grasping required for successful manipulation in the completion of specific

manipulation tasks. Apart from evaluating manipulation capabilities, these metrics and

indices are also employed to improve the manipulation capability. These metrics can be

used for deciding the ideal posture, trajectory planning, and grasp selection within the

workspace of the gripper as well as for dexterity analysis and design optimization result-

ing in better design parameters.
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Chapter 6

An Accessible, Open-Source
Dexterity Test: Evaluating the
Grasping and Dexterous
Manipulation Capabilities of
Humans and Robots

6.1 Introduction

Over the last decade, a plethora of studies have focused on the development of dex-

terous robotic grippers and hands. However, the lack of a standardized definition and

methods or tools for assessing and evaluating dexterity has resulted in researchers con-

sidering increased adherence to human-likeness to also offer increased dexterity, as dis-

cussed in [32]. This can be particularly attributed to the lack of appropriate dexterity

metrics that properly define the various aspects of dexterity and quantify how dexter-

ous specific robotic end-effectors are [117]. A tool or method for evaluating dexterity is

of paramount necessity not only for designing new highly capable robotic end-effectors

but also for evaluating the skillfulness of humans in a variety of settings and application

domains. Examples of such applications include post-injury rehabilitation assessment

and standard skill assessment for specific professions (e.g., surgeons, pilots, construction

workers etc.).

Human hand dexterity is generally defined as the ability of the hand to perform a

desired motor task precisely and deftly with ease, and skillfulness [24, 23]. Various func-
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Figure 6.1: Prototype of the proposed dexterity test board that is equipped with a rotating

base mechanism. The board is developed using plastic parts that are 3D printed and

acrylic parts that are fabricated using laser cutting.

tional evaluation tests have been employed by researchers over the years to assess and

evaluate the dexterity of the human hand [22]. These tests can quantify the functional

performance of human hands based on the ability of subjects to complete a wide range

of tasks and industry specific tests. The outcomes of these dexterity tests can also serve

as a valid indication of residual hand function after a severe injury or stroke, in addition

to being an evaluation of skillfulness. It is a common practice in industrial settings to use

these dexterity tests for the purpose of screening and selection by evaluating the work-

ers’ manual dexterity potential. The degree of improvement or the deterioration of hand

functions during rehabilitation can also be determined by clinicians and researchers em-

ploying such tests [46]. However, each of these tests is limited to a specific object range

and task category. Also, most of these tests rely on stationary platforms and require the

task to be completed in only one specific orientation. It is evident based on the analysis

and discussion of the related work that there are a number of significant hand assessment

tests that evaluate specific aspects of dexterity. However, there is a lack of comprehen-

sive, holistic tests that evaluate dexterity as a whole and can be adapted to evaluate the

capabilities of both robotic grippers and hands as well as human hands.
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Robotic dexterity is generally being defined as the "capability of changing the po-

sition and orientation of the manipulated object from a given reference configuration to

a different one" [5]. The structure of robotic grippers varies widely from simple two-

fingered parallel-jaw grippers to highly complex anthropomorphic hands. Even within a

class of grippers, the design parameters vary widely. These variations have resulted in the

lack of a common evaluation platform, benchmarks, metrics, and scores to evaluate the

dexterity of robotic hands. Hence, there is a need for a dexterity assessment test that can

evaluate the performance of robotic end-effectors, irrespective of their design parameters.

This need has also been identified in a roadmap that discusses the measurement science

progress in quantifying robotic dexterity [77].

The various factors that contribute to robot dexterity are: i) the dexterity and skill-

fulness of robotic hardware components and ii) the effectiveness of the perception and

control system employed by the robotic system in the execution of dexterous tasks. The

hardware component dexterity takes into account all the physical properties of the robotic

gripper or hand, such as the mechanical design, the available degrees of freedom, the

force exertion capabilities, the frictional properties etc., that contribute directly towards

the grasping and manipulation performance of the system. The perception system on the

other hand, encompasses all the data that is captured and analyzed based on the informa-

tion collected from the environment/ surroundings of the robot, affecting the performance

of the planning and control schemes of the robotic hardware system. In general, advanced

sensing systems and complex control architectures have been deemed necessary for the

execution of robust grasps and for the successful manipulation of a wide range of every-

day life objects. However, a number of recent studies have demonstrated dexterous in-

hand manipulation capabilities by employing underactuated, adaptive robot hands with

minimal sensing and simple control schemes[142, 143]. The lack of commonly accepted

methodologies to compare new algorithms and hardware across different robotic plat-

forms is a topic of discussion in various workshops and forums organized by the robotic

grasping and manipulation community [40, 144]. Our previous work involved develop-

ing a series of tests to evaluate the dexterity of humans and robotic grippers on a static

platform [145]. We have expanded the work to include a dynamic environment and more

complex manipulation tasks. In particular, in this work, we propose:

• A modular, accessible, open-source dexterity test that consists of a horizontal and

vertical rig on which the manipulation tasks are to be performed. The rigs are

mounted on a rotating module to simulate assembly task environments that require

the tasks to be performed in varying orientations or in dynamic situations with

varying obstacle spaces.
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• A comprehensive set of tasks that evaluate the grasping and manipulation capabil-

ities, and therefore the dexterity, of human and robotic hands. The proposed tasks

range from simple pick and place to complex dexterous manipulation tasks.

• Evaluation protocols that provide quantitative dexterity metrics based on success

rates and speed efficiency.

• A baseline score based on the analysis of human trials with and without tactile

feedback.

The proposed dexterity test can serve as a valuable evaluation tool for determining

the manual dexterity of human hands and for measuring the improvement in human hand

function post-injury. It can also evaluate the performance of robotic hands based on their

ability to complete a task irrespectively of their individual design parameters, control

systems, and sensing capabilities. The proposed dexterity test uses well-defined measures

of success (ability to complete a task successfully) and speed efficiency (time taken to

perform a set of tasks) [40], to calculate the overall performance of the human hand and

robotic grippers1.

The rest of the chapter is organized as follows: Section 6.2 presents the related work

that focuses on benchmarking dexterity, Section 6.3 presents the design of the dexterity

test, section 6.4 introduces the dexterity metrics used for the formulation of the bench-

marking system, section 6.5 discusses the validation of protocols and the baseline scores

generated from human and robot experiments, while section 6.6 concludes the chapter

and discusses some potential future directions.

6.2 Related Work

A plethora of dexterity tests have been proposed in the literature to assess the dexterity

and functionality of human hands [115]. The development of such tests has helped in the

evaluation of manual dexterity and the contribution of various hand anatomy attributes

toward functional performance. Each of these dexterity tests requires the human hand

to use various strategies for the successful grasping and manipulation of objects of spe-

cific shapes and sizes. The most commonly used assessment, the functional dexterity test

(FDT) requires the hands to pick up cylindrical pegs placed in holes of a peg board and

1Majority of the chapter is based on [146], © 2022, Frontiers. Reprinted, with permission, from Nathan

Elangovan, Che-ming Chang, Geng Gao, and Minas Liarokapis, An accessible, open-source dexterity test:

Evaluating the grasping and dexterous manipulation capabilities of humans and robots, Frontiers in Robotics

and AI, 2022
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invert them. This evaluates the ability of the user in performing a dynamic 3-jaw chuck

prehension [118]. This is a common form of a pegboard test. A number of variations of

this test involving a number of test boards and objects have been described in section

5.2.4. These tests evaluate the speed and accuracy with which the hands being evaluated

can pick, place, re-orient, and assemble objects of varying shapes for the completion of

a task.

Each of these tests is specific to particular object shapes and sizes and hence cannot

be accepted as a generic dexterity score. Moreover, all these tests are performed on a sta-

tionary board/rig that has a fixed orientation throughout the evaluation. This is far from

real world scenarios where the hands will need to adapt to a wide range of orientations.

Hence, in order to successfully evaluate the human hand function, tasks presented should

require the hand to perform tasks in a wide range of hand configurations or even in a dy-

namic environment with a dynamic obstacle space. These functionality evaluation tests

have been adopted by studies focusing on anthropomorphic robots to quantify the dex-

terity of robotic grippers, comparing them with their human counterparts [116, 117]. A

taxonomy of robotic manipulation benchmarks derived from the aforementioned studies

has been proposed by Quisepe et al., classifying robot dexterity tests with three levels of

increasing complexity: physical, dexterity, and functional tests [40].

There are also certain evaluation tests developed exclusively for robotic dexterity

evaluation that can be broadly classified into component benchmarking and system

benchmarking. These tests require the robotic grippers to perform a set of manipula-

tion tasks with a variety of objects under specific circumstances. As the name suggests,

component benchmarking focuses on specific components used for robotic grasping like

perception, control, mechanical hardware design etc. The system benchmarking on the

other hand evaluates the capability of a complete robotic system as a whole to success-

fully execute tasks and has been the focus of a number of studies. Benchmarking studies

pivot around the reproducibility, adaptability, and scalability of the benchmarking en-

vironments and procedures to various platforms [78]. Hence, studies have focused on

standardizing the testing platforms, objects, environments, and software.

A gripper that can successfully grasp and manipulate a wide range of different ob-

jects is generally considered to have a higher dexterity. Hence, a number of studies have

proposed a standardized set of objects that range in size, shape, and weight to facili-

tate replicable benchmarking systems. Section 5.2.1 details the various object sets em-

ployed for creating benchmarking protocols by the robotics community. Efforts have also

been made to compare the control strategies and learning algorithms irrespective of the

physical limitations of the end-effector. Such efforts discussed in section 5.2.2 include
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both virtual simulation suites and standardized hardware systems that enable hardware

independent performance benchmarking of control and learning strategies proposed by

various studies.

In recent years, a number of robotic competitions have been organized with the in-

tent to holistically evaluate different robotic platforms based on their ability to perform

a set of tasks sequentially in a given, fixed environment. Each competition aims at com-

paring and benchmarking the grippers’ capabilities in executing specific tasks that are

representative of a given environment. For example, the challenge could evaluate the ca-

pabilities of robotic grippers in performing a variety of tasks in a warehouse environment

[111], home environment [108], a manufacturing board [107] etc. Some of the prominent

competitions organized in recent years are discussed in section 5.2.3.

Apart from the above-mentioned studies, a number of recent studies have proposed

dexterity tests consisting of various object sets with the objective to evaluate and quantify

specific aspects of dexterity. The features of these tests and how they compare with the

test proposed in this study are presented in the results section. Gonzalez et al. designed

a Variable Dexterity Test (VDT) that consists of 4 subtests, each specifically designed

to evaluate a particular type of grasp like the precision, cylinder, spherical, and extended

spherical [147]. Another dexterity measurement kit proposed by [148] focuses on the

evaluation of pinch grasping capabilities of the fingers based on insertion, twisting, and

locking tasks on a spring-loaded wooden box. A simple and fast dexterity test for the

evaluation of hand function called the peg test was presented by Noel et al.,[149]. More

recently a 3D printed platform that combined the features of multiple dexterity tests like

the Box and Block test (BBT), Nine-Hole Peg test (NHP), and grooved pegboard tests for

the evaluation of fine manipulation and grasping capabilities has been proposed [150].

Despite the plethora of studies focusing on benchmarking dexterity, there is a lack

of commonly accepted evaluation systems across the robotics community. Given the in-

creasing interest in the design and development of dexterous robotic grippers and hands,

there is a need for a common benchmarking platform to quantify dexterity irrespectively

of the design parameters. In our previous work, we had proposed an evaluation system

that encompasses and builds upon important characteristics from the various commonly

accepted dexterity evaluation methods reviewed [145]. We further expand this work to

include more complex manipulation tasks involving a dynamic rig that requires the object

orientation to be changed constantly and a new set of objects.

In particular, in this work, we propose a dexterity test that can evaluate the perfor-

mance of a plethora of end-effectors solely on their task completion ability and speed

of execution irrespectively of individual design parameters like the number of fingers,
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actuators used, or control systems employed. Hence, it can be used to benchmark dif-

ferent classes and types of grippers and hands. For example, it can be used to evaluate

the efficiency of devices such as suction grippers, parallel jaw grippers, two-fingered or

three-fingered adaptive end-effectors, and anthropomorphic robot hands among others.

The proposed dexterity test is equipped with both horizontal and vertical components

that contain regions of specific manipulation tasks and objects that have been designed

as described in section 6.3. A key aspect of this test is the ability to rotate, changing the

position and orientation of the slots, requiring the hand to re-orient and re-position the

objects in order to successfully complete the tasks. This simulates a dynamic assembly

environment. The most important characteristic of the various benchmarking systems is

a set of standardized objects that is representative of the set of objects encountered in

industrial and home environments. However, most of the manipulated objects have been

generally found to share similar characteristics [82]. This fact has also been corroborated

by Feix et al., using video analysis of daily manipulation activities executed by house-

hold workers and machinists. Most of the objects manipulated by these workers had a

weight of less than 500 g and required a grasp width of less than 70 mm [83]. Deriving

from these insights, a set of standardized objects have been proposed for evaluation as

described in section 6.3.2. The types of objects used (sizes, shapes etc.) were chosen

from the state of the art dexterity tests that were proposed to evaluate specific aspects

of manual/gross dexterity in rehabilitation and industrial settings. These tests provide

insights on a subject’s ability to perform activities of daily living based on their perfor-

mance in handling/manipulating simple objects like cylindrical pegs, cuboid blocks etc.

For example, the Functional Dexterity Test (FDT) can assess the subject’s capability in

executing functional daily tasks involving any object that requires 3-jaw chuck prehen-

sion based on a simple test performed with cylindrical pegs [118]. Although the simple

shapes of the objects may result in simple to secure grasps, the proposed tasks require

the objects to be manipulated and assembled onto a rig that could also be moving. This

requires the hands to re-orient the objects as they approach the rig. The designated holes

for the examined objects have low tolerances during assembly. Thus, the complexity of

the task and the dexterity required for its execution are considerable. The complexity

increases further during the execution of fine-manipulation tasks like fastening nuts onto

bolts when they are in motion or performing thrust and twist motions to screw threaded

pins into heat inserts etc., Assembly and disassembly of the puzzle tasks also require the

hands to manipulate the outer covers of the puzzle by navigating them through a com-

plex trajectory track on the inner block. Hence, this test can evaluate a wide range of

manipulation capabilities using the simple set of objects proposed.
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A set of standard operating procedures for task execution during the evaluation tests

has been prepared so as to ensure the effectiveness of the benchmarking system. The

sequence and conditions in which the test needs to be carried out are presented in section

6.3.3 to ensure that the tests are organized under sufficiently similar conditions. Each set

of experiments is repeated 3 times. The results of the three trials are used to examine the

effect of familiarity to the tasks and the effect of mastering (over time) the manipulation

capabilities. The evaluation method is described in section 6.4 and the scoring sheet is

also made available. The proposed evaluation system is validated and baseline scores for

the evaluation system are determined based on human evaluation trials and the results

are presented in section 6.5. Section 6.6 concludes the chapter.

6.3 Design of Dexterity Board

6.3.1 Dexterity Rig Development

The dexterity rig, as shown in Figure 6.1, is made up of a horizontal plate (450 x 350

mm) that is split into nine manipulation regions (HA1-HA9) and a vertical plate (350

x 200 mm) made up of three manipulation areas (VA1-VA3) shown in Figure 6.4. Each

plate has a thickness of 10 mm. Each part of the region is specific to a given set of objects

and tests. Corner brackets are used to attach the vertical plate to the horizontal plate. The

assembled rig is placed on a flat surface so as for the horizontal plate to be parallel to the

surface as shown in Figure 6.2 and to have enough space to the right of the rig where the

objects can be dropped. This initial version of the rig was stationary and had a total of

19 different manipulation tasks. This meant that irrespective of the number of trials per-

formed by the human hands or robotic end effectors, the end position and orientation of

the objects remain fixed on the board. Hence, the tasks could be completed much faster

during repeated trials. However, this was not representative of real life assembly/home

environments where the target location/orientation changes every single time and might

be dynamic as well. To overcome this limitation, a second version of the rig that is dy-

namic in nature was designed as shown in Figure 6.3.

For this purpose, the assembled test board is mounted onto a rotating base unit using

a gear and lazy Susan mechanism that enables the entire test board to be rotated. The

base mechanism is equipped with a Dynamixel XM430-W350 motor with a pinion gear

mounted on it to drive the gear attached to the horizontal rig. This allows the test rig to be

rotated at varying speeds in either a clockwise or anti-clockwise direction. The base unit

is fixed to a base plate that also has three inverted caster wheels supporting the horizontal

rig plate, enabling smooth rotation of the rig. The exploded view of the proposed mech-
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Figure 6.2: A prototype of the initial version of the dexterity board.

Figure 6.3: Exploded view of the proposed dynamic dexterity test board.

anism showing the various parts comprising the test is shown in Figure 6.3. The various

regions of manipulation on the horizontal and vertical plates are presented in Figure 6.4.
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Figure 6.4: Manipulation regions/areas grouped based on the object being manipulated

on: a) the horizontal rig (HA1 - HA9) and b) the vertical rig (VA1 - VA3).

6.3.2 Objects

Custom 3D printed objects of varying shapes (cylinders, cuboids, and grooved pegs) and

sizes have been designed for tests MT01 – MT13. The engraving on one face indicates the

top side and is useful for benchmarking orientation. Tests MT14- MT22 employ standard

threaded screws, washers, bolts, and nuts of three sizes (small, medium, and large), pro-

viding the range over which the robot hand needs to operate. Custom puzzles consisting

of inner and outer puzzles are designed for tests MT23 and MT24. The base of the inner

puzzles can be screwed onto the horizontal plates in HA3 and HA9 regions respectively.

A compression spring and an extension spring between the inner and outer puzzles are

used to examine the capability of the gripper to exert sufficient forces during assembly

and disassembly. Robot grippers can plan the grasping and manipulation strategies using

the 3D models of the objects that are provided online. Table 6.1 summarizes the list of

objects used, their dimensions, the specific manipulation region on the horizontal/vertical

plate for the given task, as well as the task number, name, and detailed description.

6.3.3 Manipulation Tasks

Twenty four benchmarking tasks have been broadly classified into 5 manipulation cate-

gories. These tasks are numbered MT01-MT24.

These tasks have been adapted from existing dexterity tests as well as challenges de-

signed to provide an insight of the hand efficiency in assembly, packing, tool and machine

operation, and other jobs. The tasks are as follows:

• Simple Manipulation Tasks (MT01, MT03, MT05, MT07, MT09, MT11): The

initial positions and orientations of the objects to be manipulated in both industrial

settings and home environments are generally randomized. To render the testing
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Figure 6.5: A subject performing experiments executing tasks of the dexterity test. The

subfigures show: a) the initial position of the hand and objects, b) a placing task, c) a

tool task, and d) a puzzle task. As shown in the images the orientation of the dexterity

board constantly changes requiring the arm-hand system to adapt to various orientations

to complete the tasks successfully.

conditions similar to this, cylindrical and cuboidal objects of varying sizes are clut-

tered in random initial orientations within the reachable workspace of the robot.

The robot gripper or hand then needs to perceive, pick these objects from a random

initial pose, position them, and place them in designated holes on the horizontal

rig with a specific orientation. Successful execution of these tasks evaluates the

gripper’s perception capability to identify the initial position and orientation of
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the objects, planning the best approach to grasp, orient the objects such that the

engraving is on top, and sequentially place them into respective holes.

• Re-orientation Tasks (MT02, MT04, MT06, MT08, MT10, MT12, MT13):
One of the key manipulative skill of the human hand lies in its ability to re-orient

objects along one or more axes within its workspace. The tasks in this category

examine the capability of the end-effector to grasp an object from any given orien-

tation, rotate the object along one or more axes, and place the object in designated

holes in a very specific final orientation. The robot’s ability to successfully com-

plete the tasks serves as a direct indicator of its perception of the position and

orientation of the object and target hole during the reach to assemble phase, as

they must be aligned before the execution of the insertion task. Cylindrical and

cuboidal objects need to be inverted for tasks MT02, MT04, MT06, MT08, MT10,

and MT12 while MT13 requires the reorientation and placement of grooved pegs

into key shaped holes.

• Fine Manipulation Tasks (Fine Component Manipulation Tasks - Set A)
(MT14, MT15, MT16): The tasks in this category evaluate fine manipulation ca-

pabilities of fingers and hands required for assembly and disassembly of fine com-

ponents such as washers and nuts. These tasks evaluate the gripper’s ability to pick

up small components (like nuts, and washers), orient them, and screw/fasten them

onto other components to create an assembly. Fine finger movements like thrust

and twist, and twist and pull motions are evaluated in tests MT14 and MT15. The

threaded pins are placed in random initial orientation in the object drop area. The

gripper needs to grasp one threaded pin at a time, orient them onto the designated

holes with heat inserts on the horizontal region(HA8), thrust and twist to screw the

pins in. The next task requires unscrewing the threaded pins one at a time by twist

and pull motions and place them back in the object drop area. The final set of tasks

in this category requires the gripper to grasp small components (washers and nuts)

placed in small trays in the HA9 region of the board and insert them alternatively

onto a screw mounted in the VA3 region of the vertical plate.

• Tool Tasks (Fine Component Manipulation Tasks - Set B) (MT17 - MT22):
These tasks are an extension of the arm-hand manipulation tasks described above

and require finer control of small components to be completed. The tasks in this

category evaluate the dexterity associated with picking, precision placement, as-

sembling, disassembling, and fitting together parts without any tools. These are

complex tasks that require the end-effector to robustly grasp fine components such
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as nuts of varying sizes (small, medium, and large), place them precisely onto tips

of screws that are mounted on the vertical rig, and tighten them onto the screws as

the rig is rotating. This is followed by disassembling the nuts from the screws and

placing them back in the trays located in the HA9 region. The components will

have to be grasped robustly, and re-oriented multiple times for the successful com-

pletion of the task as the rotation of the rig causes the orientation of the screws to

vary continuously. The complexity of tasks in this category requires a high level of

dexterity for successful task execution. Hence, the rate of success and completion

time for this task category can serve as a valid indicator of the gripper dexterity.

• Puzzle Manipulation Tasks (MT23 - MT24): These tasks employ two cylindri-

cal puzzles fixed onto horizontal regions HA3 and HA9. Each puzzle is made up

of an inner and outer puzzle component attached to each other with a compres-

sion spring (puzzle 1) and extension spring (puzzle 2). Successful completion of

the tasks requires the outer component to be grasped and navigated through the

puzzle engraved on the inner component by manipulating it clockwise and anti-

clockwise, and lifting it all the way up until each puzzle is completely disassem-

bled. This needs to be followed by assembling the puzzle back by guiding the

outer component through the puzzle route on the inner component until the puzzle

is completely assembled.

6.4 Dexterity Metrics

In this section, we introduce metrics based on the successful task completion (ability) and

rate of completion (speed) of the tasks. The total score is then presented as a weighted

average of these individual scores. The final part of this section presents a ranking and

grading system that would allow easy comparison of grippers and choose the ideal grip-

per for a particular set of tasks. The metrics are as follows.

6.4.1 Successful Completion Score

Each of the tasks described in section 6.3.3 is repeated with four objects sequentially and

a point is awarded for each successful completion. Hence, the score for any given task

’i’ can vary between ’0’ to ’4’. And equation 6.1 describes Ss (Successful completion

Score), the ability of the gripper to successfully complete all the tasks.

Ss =
1

Pmax

n

∑
i=1

Pi, (6.1)
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Table 6.1: Dexterity test board components, regions, and task description grouped ac-

cording to the five task categories and annotated with different colours.
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Table 6.2: Table presenting the baseline scores for the dexterity tests performed by a

human with a glove and without a glove

Task
category

No Glove With Glove
Average Time

(s)

Standard

Deviation

Coefficient

of Variance

Average Time

(s)

Standard

Deviation

Coeffecient

of Variance

Total Time 452.10 57.65 12.67 500.31 64.46 12.72

Pick and Place 63.49 7.04 11.07 68.28 7.41 10.54

Reorientation 62.28 5.05 8.08 71.33 7.64 10.39

Fine Manipulation 51.20 5.61 7.55 66.04 5.84 6.24

Tool 253.51 44.76 17.52 275.21 43.55 15.72

Puzzle 20.72 4.55 21.95 19.44 3.31 14.71

n is the total number of tasks (24) and the term Pmax denotes the maximum possible

score that can be achieved by a gripper completing all the n tasks and can be written as

Pmax = 4n. Pi is the number of objects successfully manipulated for the ith set of tasks

and can vary between ’0’ and ’4’. The total points achieved by a gripper ∑n
i=1 Pi denotes

the total score of successful completion and can be replaced by the term Ptotal . Equation

6.1 can now be rewritten as,

Ss =
Ptotal

Pmax
, (6.2)

Equation 6.2 provides us with a Successful completion score Ss that varies between 0 to

1. The lower end of the scale represents a non-dexterous device incapable of executing

any tasks and the higher end of the scale represents a highly dexterous device capable of

successfully executing all the manipulation tasks.

6.4.2 Time Required Score

The metrics introduced in this section can be used to measure the rate of task completion.

Task completion time can vary between each individual task depending on the objects,

the initial orientation of the objects, grasp planning, approach, and manipulation strategy

employed. Equation 6.3 provides St (Time required score), the speed with which the

gripper can complete the tasks.

St =
log(Tmin)

log(∑n
i=1 Ti)

, (6.3)

where Tmin is the minimum time taken for task completion obtained from the human

experiments. We consider human performance as the baseline. The time required for

completion of ith task is given by Ti. The cumulative time taken for all n tasks is calculated

as ∑n
i=1 Ti and can be written as Ttotal . Equation 6.3 can now be rewritten as,
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St =
log(Tmin)

log(Ttotal)
, (6.4)

Equation 6.4 provides us with a time required for task completion score St that varies

between 0 to 1. A higher time score St indicates the ability of the gripper to complete the

manipulation tasks at a faster rate and thus signifies better dexterity.

6.4.3 Total Dexterity Score

The total dexterity score Stotal is calculated from the weighted sum of the successful

completion score (Ss) and time required score (St). This metric provides us with the

combination of gripper’s ability and speed in completing the various manipulation tasks.

To allow for easy comparison, the total score is presented on a percentage scale ranging

from 0 to 100% as shown in equation 6.5.

Stotal = (wsSs + wtSt) ∗ 100, (6.5)

Replacing the values of Ss and St , the equation can be rewritten as,

Stotal =

(
ws

(
Ptotal

Pmax

)
+ wt

(
log(Tmin)

log(Ttotal)

))
∗ 100, (6.6)

The weight constants for successful completion (ws) and time (wt) are used to vary

the importance of individual sub-score. The sum of these constants must be equal to

1 (ws +wt = 1). If the weights are assigned an equal value (0.5 each) the equation would

distribute equal importance to the ability and speed of task completion. In the case of

evaluating the gripper’s ability to perform certain complex tasks irrespective of the time

taken to complete them, a greater value could be assigned to ws. The results are presented

on a scale ranging from 0 (simplistic, non-dexterous system) to 1 (human-like, dexterous

system). This score represents the capabilities of a gripper or hand to perform complex

grasping and manipulation tasks compared with the human hand, which is considered

to be Nature’s most effective and dexterous end-effector. If a gripper can perform all

the tasks successfully within the baseline time determined by human experiments, the

gripper is considered to be highly dexterous exhibiting human-like grasping and manip-

ulation performance.

6.4.4 Dexterity Ranks and Grades

In order to classify and compare the robot grippers amongst each other, a system of

ranks and grades is introduced. This grading system helps decide on the ideal gripper
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Table 6.3: Grading system for the grippers based on successful task completion in a given

task category.

Tasks completed Grades
No tasks completed F

Tasks <1/3(Ttotal) D

1/3(Ttotal)<Tasks <2/3(Ttotal) C

Tasks >1/3(Ttotal) B

All tasks completed A

for a given set of tasks. The ranks for the robot grippers can vary from "0 stars" to "5

stars"(one star corresponding to each task category). A robot gripper is awarded 1 star on

successful completion of all the tasks in a given task category. No star is awarded if the

gripper fails in executing any of the tasks. Hence, a robot’s dexterity can be easily verified

based on the number of stars from ‘0 stars’ (non-dexterous) to ‘5 stars’(most dexterous).

For example, if a hand can accomplish all the tasks in 3 of the 5 task categories, its rank

would be ‘3’ stars. To differentiate between hands that are equally ranked, a grading

system consisting of 6 grades is provided. If none of the tasks in a task category can be

executed, it is graded as an ‘F’ and an ‘A’ is awarded for grippers capable of completing

all the tasks successfully. The detailed grading system is presented in Table 6.3. This

ranking and grading system serves as an indicator of the robot’s overall performance as

well as its individual capabilities in the successful execution of various task categories.

If the requirement is for a simple pick and place task, a ‘1’ star robotic gripper that has

graded ‘A’ for pick and place tasks would be well suited rather than a complex ‘5’ starred

gripper. Thus, this ranking and grading system shall help identify grippers suitable for

various needs and task categories.

6.5 Validation of Protocols and Baseline Score of Human
Trials

The benchmarking protocols detailed in section 6.3 were executed by humans to vali-

date their efficiency and the results were calculated using equations 6.1, 6.3, and 6.6 to

obtain a dexterity score. The average of these human hand experimental results is used

as a baseline score for comparison and evaluation of human hand dexterity, as well as

for comparing the dexterity of other robotic grippers and hands. This study recruited ten

healthy subjects whose arm lengths were 76.15 cm ± 4.48 cm. The University of Auck-

land Human Participants Ethics Committee approved this study, and all participants gave

informed consent. The subjects sat in a comfortable position for the entire duration of the
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Figure 6.6: The time taken by 10 subjects to complete various manipulation tasks across

3 trials with and without gloves is presented.

experiments, with the forearm placed to the right of the dexterity test as an initial configu-

ration. Three sets of experiments were performed by the subjects as shown in Figure 6.5.

Each subject repeated the tasks MT01 - MT24 sequentially for three trials for the first

set of experiments without gloves. The experiments were then repeated with a padded

palm, high grip glove for three trials to determine the effect of reduced tactile sensing

on dexterous manipulation capabilities. For both sets of experiments, the dexterity rig

was rotating at a constant speed of 3 RPM to examine the subjects’ ability to adapt to a

dynamic test environment in terms of perception, planning, and manipulation capability.

The third set of experiments involved performing the tasks on a stationary rig for three

trials in order to determine the effect of static against dynamic environments on the per-

formance of the participants. The detailed evaluation protocol with explanatory images
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Figure 6.7: Percentage change in manipulation time with gloves on for the various task

category: Pick & Place (PP), Reorientation (RO), Fine Component Manipulation (FC),

Tool Task (TT), Puzzle Task (PT), and Total Time (TT).

Figure 6.8: Subfigure a) presents a comparison of the time taken by the subjects to com-

plete various task categories in seconds when the rig was static and in motion (rotat-

ing). Subfigure b) presents the percentage increase in completion time for the various

task category when the rig was in motion. The task categories are: Pick & Place (PP),

Re-Orientation (RO), Fine Component Manipulation (FC), Tool Task (TT), Puzzle Task

(PT), and Total Time (TT).

and scoring sheets, as well as the open-source CAD files of the proposed dexterity test

are provided and can be downloaded from the following website:

http://www.newdexterity.org/dexteritytest

The particular website will also serve as a repository of the scores and evaluations of

various robotic hands and grippers.
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Figure 6.9: A subject performing the experiments on the dexterity test board with a palm

mounted interface to control a multi-modal parallel jaw gripper, performing: a) a placing

task of a medium cylinder, b) a placing task of a large square, and c) a re-orientation task

of a grooved peg.

6.5.1 Results and Discussion

The various features being evaluated in this study and how they compare with other

existing dexterity tests is shown in Table 6.4. Figure 6.6 presents a visual representation

of the tasks and the results of the experimental trials corresponding to each of the five

different task categories. In order to determine the degree of variation, we calculated the

percentage coefficient of variation (%CV) for each category’s completion time and the

overall completion time using

%CVt =
σt

μt
∗100, (6.7)

where, σt and μt are the standard deviation and mean for a given task category t. The

%CVt for the overall completion time for all the participants across three trials was 13%.

The %CV for all the individual task categories was less than 20%. These values of %CV

signify low dispersion time across various subjects and trials and helps in validating

the efficiency of the experimental protocols across various subjects. Hence, the values

derived from these experiments could be used as baseline scores for human and robot

dexterity evaluation experiments. There was no significant correlation between the arm

length of the subjects and the performance for the task categories examined in this study.
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Figure 6.10: The comparison of time taken by the multi-modal parallel jaw gripper to

complete tasks for objects of varying shapes and sizes, is presented. C, S, and P stand

for Cylinders, Squares, and Pegs respectively. The subscripts s, m, l, g, denote small,

medium, large, and grooved parts respectively.

Figure 6.11: This pie chart presents a comparison of the time taken by the robotic grippers

for executing tasks with objects of varying shapes and sizes when compared against

the human hands. C, S, and P stand for Cylinders, Squares, and Pegs respectively. The

Subscripts s,m,l, and g denote small, medium, large, and grooved objects respectively.

It can also be noted from the plots that the average time taken by the subjects to complete

the tests in each of the individual task categories was significantly lower than the time

taken in the previous trial. The results are validated using ANOVA to determine the

statistical significance between the trials. A p-value of 0.013 (less than the alpha value

of significance, 0.05) for the total time taken to complete the tasks across the 3 trials

indicates that the time taken for successive trials decreases significantly. This could be

attributed to the subject’s familiarity with the tasks and hence indicates that dexterity

improves with repetition. Dexterity could then be considered a learned attribute that can

be improved by exercising specific sets of tasks.

In order to determine the effect of tactile sensing on the dexterous manipulation ca-

pabilities, the experiments were repeated with gloves on and the results are presented
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in Figure 6.6. This had varying effects for various task categories, as shown in Figure

6.7. The time taken to complete the pick and place task category was identical with the

gloves on and off. The effect was most pronounced for fine manipulation tasks where the

average completion time was higher by 30% when performed with the gloves. On the

other hand, the puzzles could be solved 12% faster with gloves on. Similar to the first set

of experiments, the tasks were completed faster when the trials were repeated indicating

the learning curve is effective in improving dexterous manipulation even with the gloves

on. ANOVA resulted in a p-value of 0.0066 which is less than the alpha value of signif-

icance (0.05) and one would reject the null hypothesis, as there is strong evidence that

the values between trials differ. The percentage coefficient of variation (%CV) for all the

individual tasks as well as the combined total time was under 20%. The results obtained

from these two sets of human experiments are presented in Table 6.2. These results serve

as the baseline scores for the dexterity tests.

Further, the third set of experiments was performed for three trials on a stationary

rig to investigate how much dexterous manipulation capability improved on a fixed rig

as opposed to when one in motion was used. The coefficient of variation for all the task

categories was well under 13% indicating a closer dispersion time across subjects in com-

pleting the tasks on a stationary rig. The result of this experiment is presented in Figure

6.8. It is clear from the plots that the task completion time was faster on a stationary

rig for all the task categories. This effect was most prominent for the puzzle task which

took 40% more time when the rig was moving. As opposed to this the fine manipulation

task category was slower only by 7%. As with the previous set of experiments, the task

completion time decreased across the trials further confirming the effects of the learn-

ing curve on the execution of dexterous manipulation tasks. The experiments were also

performed with a multi-modal parallel gripper mounted on a palm interface as shown

in Figure 6.9 to determine the dexterous manipulation capabilities of the gripper and to

investigate the effect of learning on manipulation capabilities across trials. The gripper

was unable to complete all the task categories as it lacked the complex in-hand manipu-

lation capabilities required for successful task completion in these categories. However,

task completion time reduced significantly with each consecutive trial for all the tasks

that could be successfully completed, as presented in figure 6.10. This further supports

the argument that dexterity can be learned and improved by performing a particular set

of tasks repeatedly. Figure 6.11 presents the pie chart comparing the percentage of time

taken by the human hand to complete the various tasks against the time taken by the

robotic gripper. As seen from the pie chart, human hands can complete the tasks in a

very small fraction of the time taken by the robotic grippers. This shows that there is a

huge room for improvement of robotic devices.
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6.6 Conclusion

In this chapter, we proposed a new modular, affordable, accessible open-source dexter-

ity test that evaluates the grasping and manipulation capabilities of humans and robotic

hands, and other end effectors by combining the features of multiple human dexterity

tests as well as new task categories specifically designed for robots. These tests help

quantify the manual dexterity of humans apart from evaluating the human hand function

improvement post-injury. The features from many existing hand function tests, along

with new features such as the rotating module and the dexterity puzzles make this test

one of the most comprehensive dexterity evaluation systems. Apart from this, the test also

involves benchmarking tasks that evaluate key robotic manipulation capabilities identi-

fied from the literature and robotic challenges. A set of dexterity metrics have also been

proposed that quantifies the dexterity of robot grippers and hands by evaluating their abil-

ity to complete these tasks on a scale ranging from 0 (simplistic, non-dexterous system)

to 1 (human-like, dexterous system). The scores are based on the hands’ ability to com-

plete the tasks successfully with accuracy and precision, as well as the speed at which the

tasks can be executed. The weighted sum of the successful completion and speed of com-

pletion is used to obtain the final dexterity score. Further alternative measures in the form

of dexterity ranks and grades enable comparison of various grippers and their manipula-

tion capability in an intuitive manner irrespectively of their individual design parameters.

Thus, the proposed dexterity test and metrics provide researchers around the world with

benchmarking methods and tools that can be easily replicated to quantify the ability of

robotic end-effectors to perform complex tasks effectively, allowing the comparison of

their grippers against various classes of grippers. The accompanying website shall serve

as an open-access repository of dexterity scores for robot hands and grippers as well as

an open-source initiative for the dissemination of the dexterity test designs. The various

evaluation methods proposed in the study have been validated using human trials. The

output of these trials has been used to quantify dexterity based on the scoring method-

ology proposed. The importance of tactile feedback in performing these evaluations is

also examined by performing the tasks with a padded glove and the results are presented.

From the results, it is clearly evident that the task completion time decreases with trials

for both sets of experiments, indicating that a clear learning curve exists and that humans

perform better after practicing. The subjects took significantly longer to complete the

tasks with the padded gloves. This clearly shows the importance of tactile feedback in

performing dexterous manipulation. It is also clear from the robot gripper experiments

that the human hands can complete the tasks in a very small fraction of the time taken
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by the robotic grippers indicating that there is a huge room for improvement of robotic

devices.
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Table 6.4: Table comparing the test environment, object sets, and features being evalu-

ated across various dexterity tests proposed in recent literature. The task categories are

abbreviated as PP - Pick & Place, RO - Re-Orientation, FM - Fine Manipulation, TT -

Tool Task, PM - Puzzle Manipulation.

Studies
Designed for Test

Environment
Object set

Task Categories
Obstacle

Humans Robots PP RO FM TT PT

Noel et al., 2011 � 2 vertical

planes
Plastic pegs � N/A

Gonzalez et al., 2015 � 2 wooden

boards

Custom

made plastic

objects

(4 sets)

� N/A

Darpa Robotic Challenge,

2015
�

Four

sequential

courses

Manipulation

tasks of varying

complexity

(4 tasks)

� � Stationary

Amazon Robotic challenge,

2016 [151]
�

Shelving unit

structured in

12 bins

Objects

representative

of objects

handled in

amazon

warehouse

(39 objects)

� � Stationary

Saraf and Bisht, 2020 �
Single holed,

spring loaded

wooden box

3D printed

pegs
� � � N/A

IROS RGMC, 2020 [152] � Dedicated

taskboard

Objects

representing

different classes

of Industrial

assembly

(4 sets)

� � � � Stationary

Robocup@home, 2020 �

Home

environment

arena with

structured

rooms

Categorized

objects

(30 objects)

� � Stationary

Wilson et al., 2021 � 3D printed

platform
3D printed pegs � � Stationary

This study � � Dynamic

board

3D printable

objects and

standard

bolts/nuts

(14 sets)

� � � � � Dynamic





Chapter 7

Comparing Human and Robot
Performance in the Execution of
Kitchen Tasks: Evaluating Grasping
and Dexterous Manipulation Skills

7.1 Introduction

Essential tasks that need to be performed routinely for safe and good quality of life

are described as activities of daily living (ADL) [153]. One of the key subsets of ex-

tended ADLs involves the ability of an individual to independently perform kitchen tasks

like feeding oneself, making a hot drink/food, carrying the hot drink from one room to

another, and washing up [154]. Several assistive robotic arms and grippers have been

developed to specifically address the difficulties in executing activities of daily living

[155, 156]. A number of studies have also focused primarily on developing of robots for

kitchen-specific task execution. For example, a generalized framework for operating the

doors and drawers in a kitchen environment has been presented in [157]. Furthermore,

the system integration of a daily assistive robot for the successful execution of cook-

ing tasks like cutting, peeling, and transferring was demonstrated using the successful

preparation of a salad in [158].

However, there is a wide gap in the focus and the employed approaches of the

robotics research and the healthcare community focusing on human-oriented task com-

pletion [159]. While robotics research focuses on task executions as a sequence of control

strategies and motion types, the healthcare community is more concerned about clini-

85
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Figure 7.1: User wearing a vest mounted human machine interface for controlling a paral-

lel jaw gripper. The gripper and the robot hand used in the experiments are also depicted.

cal assessment. Hence, several robotics researchers have investigated the various grasps

and manipulation types employed in completing ADLs from video recordings of task

execution in selected environments like homes, machine shops, etc [62]. The various at-

tributes contributing to successful task executions can be captured in a taxonomy. These

attributes can then be translated to enable the planning and execution of manipulation

tasks by robotic grippers [73].

Hence, there is a need for capability maps and taxonomies capable of mapping the

task execution capabilities of both humans and robotic grippers alike. In this study, a vast

dataset that includes detailed annotations of the various grasping and manipulation strate-

gies is generated based on the analysis of video recordings of human subjects performing

ADLs in a kitchen environment. Based on the analysis, we propose a kitchen task-specific

taxonomy that classifies the various features employed to complete activities in a kitchen

environment successfully. The same tasks were repeated using robotic grippers/hands

mounted on an interface in a kitchen setup prepared in a laboratory setting. The taxon-

omy proposed is used to compare the grasping and manipulation capabilities of robotic

grippers and human hands. The comparison results are presented in a color-coded map

highlighting the current abilities and limitations of the robotic grippers in the execution

of specific kitchen tasks. These insights can help develop a new class of robotic grippers

that can execute the various sets of kitchen tasks on par with human hands.
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7.2 Related Work

Unlike a manufacturing setting, the kitchen environment is constantly changing, and the

objects being encountered vary widely from cutlery, a variety of food items, appliances,

groceries, and trash. The most commonly executed tasks can be categorized into four

categories: i) loading and retrieving the groceries from the pantry/fridge, ii) preparing the

food, iii) rinsing cutlery, loading and unloading the dishwasher, iv) cleaning the counter,

cooktop, sink, and taking out the trash. Each of these task categories requires different

grasping and manipulation strategies depending on the properties of the object being

manipulated (shape, weight, texture etc.), where they are located (top shelf of the cabinet,

lower rack of the dishwasher, on the countertop, etc.) and whether the object surface

is wet/dry, and on the person performing the task. Hence, an ideal dataset of kitchen-

specific tasks must include all these modalities being performed by subjects in their home

kitchen environments.

Currently, several datasets are available that contain observations of grasping and

manipulation strategies employed by subjects for performing a specific type of kitchen

task like cooking, setting the table, or other similar tasks in an identical environment.

The TUM kitchen dataset, for example, is made up of subjects setting the table using

the same objects and similar locations in the sensor-equipped TUM kitchen environment

[160]. The food preparation dataset presented in [161] on the other hand, was collected

from participants following a predetermined task order within a delimited space to pre-

pare a single portion of salad. The GTEA Gaze dataset is comprised of subjects preparing

a meal of their choice from 30 different kinds of foods allowing for a varied set of ma-

nipulation tasks specific to the meal [162]. However, these tasks and environments are

not representative of everyday tasks performed in a kitchen environment. Hence, in this

study, the proposed dataset was generated for all of the task categories associated with

a home kitchen environment, from stocking the groceries, retrieving them to prepare a

meal, cleaning the dishes, cleaning the cooktop, cleaning the counters, and taking out the

trash.

Analyzing these datasets helps us determine the patterns of grasps and manipulations

executed by the human hands for specific tasks/objects in a kitchen environment. For

instance, subjects have been identified to use five to ten specific grasps in a home en-

vironment and machine shop, respectively, for the completion of 80% of the tasks [62].

The grasp planning of robotic grippers has been aided by grasp taxonomies defined from

grasping data and videos. Common terminology for the classification of the human hand

grasp configurations has been identified based on opposition types, thumb position, fin-

ger assignments, and grasp types in terms of precision, intermediate, and power grasps
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executed [38]. The general manipulation tasks and strategies have been classified in a

taxonomy based on the hand-centric and motion-centric attributes of the task. They have

been demonstrated to apply to both humans and robots [8]. A taxonomy specifically for

the recognition of human manipulation strategies and for transferring them to robotic

end-effectors has also been proposed [72]. With respect to kitchen tasks, effective ma-

nipulation motions employed in cooking tasks have been classified in a motion taxonomy

that captures the attributes of a particular motion as manipulation codes [73]. However,

some of the grasping and manipulation behaviors exhibited by humans are not feasible

by a robot hand.

There is a lack of a database that captures all the essential tasks performed in a kitchen

environment. The robots can complete kitchen tasks using a sequence of simple grasps

and manipulation strategies as opposed to the complex strategies employed by humans to

manipulate multiple objects in parallel. The efficiency of these simple strategies on suc-

cessful task completion and their effect on the completion time needs to be analyzed. In

this study, three main steps were involved in the formulation of the taxonomy and capa-

bilities maps of robotic grippers for the execution of kitchen specific tasks: i) generating

a dataset of grasping and manipulation strategies, ii) classifying the attributes associated

with each execution in a taxonomy, and iii) comparing the performance of human hands,

robot hands, and grippers1.

The rest of the chapter is organized as follows: Section 7.3 details the setup used

for the collection of kitchen specific grasping and manipulation data from humans and

robot grippers, section 7.4 presents the detailed analysis of the human dataset, section

7.5 presents the comparison of the robotic end-effectors against the human hand and

proposes a kitchen task specific taxonomy, while section 7.6 discusses the results of the

analysis of the initial dataset.

7.3 Data Collection Setup

In this section, we present the detailed experimental setup used for data collection of the

grasping and manipulation strategies executed in a kitchen environment by humans and

humans directly operating robotic end-effectors.

1Majority of the chapter (sections 7.1 - 7.6) is based on [163], © 2022, IEEE. Reprinted, with per-

mission, from Nathan Elangovan, Che-ming Chang, Ricardo V. Godoy, Felipe Sanches, Ke Wang, Patrick

Jarvis, and Minas Liarokapis, Comparing Human and Robot Performance in the Execution of Kitchen Tasks:

Evaluating Grasping and Dexterous Manipulation Skills, in 2022 IEEE-RAS International Conference on

Humanoid Robots (Humanoids), IEEE, Okinawa, Japan, 2022.
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Figure 7.2: Subfigure a) presents the data collection setup at a user’s home kitchen. Sub-

figure b) presents the side camera view. Subfigure c) presents the central main camera

view. Subfigure d) shows the helmet camera. Subfigure e) shows a user loading the dish-

washer using an anthropomorphic gripper operated by a human machine interface. The

figure is annotated as follows: 1 Helmet camera configuration, 2 three GoPro cameras

are mounted on a lightweight helmet. The central main camera faces downwards to cap-

ture hand motion and interactions during ADL in a kitchen environment, as shown in Fig.

c). Supplementary cameras, e.g., 3 an iPad, are placed elsewhere in the environment to

capture the operator’s whole-body motion and provide side-on views of grasps, as shown

in Fig. b). 4 shows an overhead camera rig, 5 a Birds Eye D435I Camera, 6 the interface

on the vest, 7 daily objects, 8 a dishwasher, 9 a dishwasher rack, 10 the data recording

platform, 11 the live streams from sensors, and 12 the mobile trolley used to carry the

data collection PC.

7.3.1 Human Data Collection Setup

The human data were collected from multiple users performing kitchen tasks associated

with activities of daily living in their home kitchen environment with the purpose of

analyzing them and extracting the frequencies of the grasping and manipulation strategies

employed (see Fig. 3).

These activities included a set of 10 tasks categorized into four major categories: i)

stocking - pantry and fridge, ii) cooking - breakfast, lunch, dinner, and operating kitchen

appliances, iii) dishwasher - loading and unloading, and iv) cleaning - counter, cooktop,

and taking out the trash. The setup for the collection of human data is shown in Figure

7.2. The primary data was obtained from a lightweight helmet mounted with three GoPro

cameras capturing the grasping and manipulation tasks executed by the subject in a field

of view angle. The view from the primary, central camera mounted on the helmet was

complemented by two other outward-facing cameras to provide a wider angle of view

and overcome the boundary conditions. The second set of cameras mounted on a tripod

was placed in the task execution regions to capture the manipulations performed in tight
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and occluded spaces like a dishwasher rack, inside a fridge shelf, pantry, etc. Moreover,

the third set of cameras provided a side-on view that recorded the overall environment,

operator’s pose, and shoulder movements. All cameras recorded the various activities

performed by the subjects to complete each task. The initial data was collected from four

separate households performing the tasks at different instances.

The videos collected were compiled and time synced during the annotation process.

The data was then reviewed and annotated based on existing grasp, and manipulation

taxonomies [38, 8]. Every individual activity was annotated detailing attributes such as

activity duration, number of hands, grasp classification, manipulation type, the direction

of object movement, posture, shoulder movement, level of water residue on the object,

and an indication of washing hands. The data was collected by AI Data Innovations Cor-

poration and reviewed by two teams of annotators following a detailed guide outlining

the annotation process. Subject experts continuously reviewed the annotations to ensure

consistency.

7.3.2 Robotic Grippers Data Collection Setup

The data for robotic grippers was collected from users performing manipulation tasks in

a kitchen setup at the laboratory as shown in Figure 7.2e. A parallel jaw gripper and the

NDX-A anthropomorphic robot hand [12] were operated using a forearm mounted inter-

face to perform various activities in the kitchen environment. The configuration for the

forearm mount interface shown in Figure 7.1 is adapted from the setup described in [44].

A Raspberry Pi 4 Model B was used to buffer the onboard Intel Realsense T265 cam-

era data flow, and a desktop computer was placed on a trolley instead of the lightweight

back mounted Intel NUC. This was primarily due to weight considerations, bandwidth

limitations, and facilitating the collection of larger datasets. The interface allows pro-

grammable target positions and preset current limits to each of the motors in the grippers

used. The resulting motor positions and trigger motion data are streamed to the desktop

computer.

An iso-elastic arm vest with higher payload capacity substitutes the previous

lightweight vest and arm. A tripod with an extension arm positioned the birds-eye view

camera above the workspace. The bird’s eye camera used an Intel Realsense D435I

RGBD camera that provides top-down depth information and RGB data for fiducial

marker tracking during the data collection process. The birds-eye view camera provides

a pose and initial relative position data between the set marker and the forearm mount

interface. Since the height from the floor to the bird’s eye camera is known, a planar

reference can be obtained by placing the fiducial markers on the surface of the benchtop.
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The depth data can be used for visualization and telemetry but is heavily affected by

occlusions, resolution, and noise. Data from the T265 tracking camera is used as the pri-

mary pose and trajectory estimation source during occlusion from the bird’s eye camera.

All relevant datasets are published onto ROS nodes and recorded for analysis.

Table 7.1: The table presents the detailed analysis of the grasping and manipulation

strategies employed by humans for the execution of kitchen tasks.

7.4 Dataset Analysis and Taxonomy Identification

7.4.1 Analysis Based on Existing Taxonomies

Every activity performed during the completion of the four categories of kitchen tasks

was annotated based on the existing grasp and manipulation taxonomies. This resulted

in a dataset that included over 2000 individual activities performed by the four subjects

in different household settings. Figure 7.4 presents the various grasping and manipula-

tion attributes associated with each of the task categories. It was observed that different

subjects employed different grasp and manipulation approaches for the same objects de-

pending on the task category. The way a spoon is grasped varies heavily during a cooking

task where it had to be manipulated within hand, while for the dishwashing tasks, a more

simple grasp will suffice to pick and place them from the dishwasher. This indicates the

effect of manipulation required for a task on grasp planning. All the grasping and ma-

nipulation strategies associated with each of the task categories are presented in Figure

7.4 along with the graphical representation of the grasps. The most commonly employed

manipulation types are also detailed in the figure. The subjects employed a sum of 33

grasps and 10 manipulation types to complete the various kitchen activities. However,

some approaches were more commonly used than others. The frequency at which these

various grasps and manipulation are used are presented for each of the individual tasks

in Figure 7.3.
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Figure 7.3: Frequency of grasp and manipulation types for each of the ten kitchen tasks.

There is heterogeneity in the grasp types used for each task. Most tasks involved object

movement with fixed contact points (C P M NW NA) type of manipulation.



D
ataset

A
n
aly

sis
an

d
T

ax
o
n
o
m

y
Id

en
tifi

catio
n

9
3

Figure 7.4: Frequency of grasp and manipulation types for each category of kitchen tasks is presented. Representative images for the

various types of grasps can be seen in the legend on the left and the manipulation types are listed on the right. The radar charts show the

frequencies of the power, precision, intermediate, and unknown grasps, as indicated in the legend at the bottom left of the figure. The

human subjects employed up to 21 different grasps for the completion of kitchen tasks. The large diameter is one of the most commonly

used grasps, usually associated with picking up containers and large objects. It is noted that few intermediate or unknown grasps were

used. For all four task categories, there is a high prevalence of prehensile contact, manipulation with motion, not within the hand, and

no motion at contact (C P M NW NA) type of manipulation. This represents the manipulation where the contact points are fixed during

object motion.
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7.4.2 Considerations for Robot Task Execution

Table 7.1 summarises the results of the human grasping and manipulation strategies em-

ployed for the successful completion of various categories of kitchen activities. This can

be used to derive insights for the selection of the minimum attributes required for the

completion of specific kitchen tasks. For instance, the stocking of groceries onto a pantry

required the use of only one hand for 79% of the time, indicating the lack of need for bi-

manual strategies in this category. On the other hand, the preparation of breakfast, lunch,

and dinner required both hands to complete more than 50% of the cooking tasks suc-

cessfully. Similarly, most of the grasps performed during the kitchen activities could be

classified under power and precision. These accounted for 87% of the task executions.

Every task category required the thumb to be out of the plane from the palm and oppose

the fingers for the completion of 75% of the total tasks. The number of unique grasps

performed by the subjects during each task category indicates that the cooking tasks re-

quired a varied number of grasp types, while the appliances could be operated with the

least number of grasps. Also, most of the manipulation tasks could be completed with

the contacts fixed on the object during task execution.

This analysis is valuable for the design of robotic grippers and hands. Deriving from

these results, an end-effector with a thumb positioned out of plane from the fingers and

opposing them will complete a significant quantity of the kitchen tasks. The average

unique grasps employed for each category is much lower than the total grasp types iden-

tified from the annotations. This indicates alternate grasp types can be used to complete

kitchen tasks that require complicated grasps, and the choice of grasp selection was sub-

jective. Hence, a gripper that can only perform a limited number of grasp types can

still perform complicated kitchen tasks using alternative approaches. These inferences

have been experimentally validated based on the execution of the kitchen tasks using

an anthropomorphic robot hand and a two-fingered parallel gripper, and the results are

presented in section 7.5.

7.5 Evaluating Robotic Grippers

The ability of the robotic grippers to execute the set of 2000 activities from the human

data was analyzed. The output has been grouped into 3 classes: i) the gripper/hand can

execute the task efficiently every time, ii) the tasks failed during multiple trials or required

extensively long duration to complete, and iii) tasks cannot be performed with the current

design of the gripper. The results of this analysis are presented in the dexterity/capability

map shown in Figure 7.5. The analysis showed that the gripper could perform 56% of the
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tasks performed by the humans efficiently and 35% of the tasks could not be executed as

efficiently, as the grippers required multiple attempts to perform these tasks successfully.

Certain complex tasks had to be executed by performing multiple steps that resulted

in a significantly higher duration to complete. Several factors contributed to this loss

of efficiency, varying from the position and orientation of the object, operating in tight

spaces or cluttered environments, and the properties of the object being manipulated,

among others. For example, the gripper failed to pick small objects like spoons that

were placed inside the dishwasher’s cutlery basket due to the restricted operation space.

The grippers also failed multiple times at picking a plate lying flat on the counter. The

gripper was unable to complete 9% of the tasks executed by the humans using the current

design restrictions. This included some tasks requiring complex in-hand manipulations

that could not be converted to multiple sub-tasks that can be executed sequentially.

In order to further evaluate the performance of the robotic grippers based on the time

duration required to complete, a set of 8 kitchen tasks were performed with the grippers

mounted on an interface and with humans. The results of this comparison are presented

in Figure 7.6. Though the robots could complete the majority of the tasks performed by

humans using the limited grasping and manipulation strategies available with the current

design, the execution time was significantly higher. The figure shows that humans only

require a very small fraction of the time the robotic grippers require to complete all

of the evaluated kitchen tasks, leaving tremendous room for improvement. The review

of the human and robot task execution data revealed a number of strategies commonly

employed by humans in a kitchen environment. These strategies are classified in the

following kitchen-oriented task-specific taxonomy.
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Figure 7.5: The capability map compares the current capabilities of the robotic grippers to execute the set of 2000 activities performed by

the humans for the completion of kitchen tasks. The activities are classified into three main classes based on robotic grippers capability:

1- successfully execute the task every time, 0.5 - multiple attempts or very high duration required to complete the task, 0 - cannot perform

the tasks with current capability.
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Figure 7.6: The figure compares the percent of time taken by humans to complete the

same set of kitchen tasks performed by robotic grippers.

7.5.1 Kitchen Task Specific Taxonomy

Humans employ a variety of complex grasps and manipulation strategies for task execu-

tion that decrease the completion time significantly. In this section, we propose a taxon-

omy of the unique manipulation strategies employed by humans in a kitchen environment

as presented in Figure 7.7.

7.5.1.1 Parallel Task Execution Manipulation

Parallel task execution accounts for the majority of the time saved by humans. A complex

task is executed by the cumulative effort of individual tasks performed by the hands.

Placing a plate in between two plates would require the hand to lift the top plate, move

the other plate onto the lower plate, and place the top plate. This complex task executed

as a single task by the humans is performed as 3 sequential tasks by the robots, resulting

in slower task completion.

7.5.1.2 Bimanual stabilized Manipulation

Bimanual stabilized manipulation tasks require the objects being manipulated to be sta-

bilized by one hand while being manipulated by the other as demonstrated in Figure 7.7b.

For example, a salt grinder needs to be held firmly by one hand while the other hand can
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Figure 7.7: Some of the manipulation strategies employed by humans in the execution

of kitchen tasks are presented in this figure: a) parallel task execution manipulation, b)

bimanual stabilized manipulation, c) in-hand stabilized manipulation, d) compound ma-

nipulation, and e) grasp conversion manipulation.

twist it to grind the salt. Another example would be an apple held firmly on a cutting

board while another hand can peel the skin off.

Another key manipulation exhibited by the humans involved holding down an object

and manipulating a part of the object using the same hand. In-hand stabilized manipu-

lation can be seen in Figure 7.7c where the user stabilizes the milk can by holding its

handle while twisting the cap using the index and thumb fingers to open it.

7.5.1.3 Compound Manipulation

The humans demonstrate the ability to grasp and manipulate a wide number of objects of

varying shapes and sizes that each require a different grasp type in a single task. In Figure

7.7d, the subject can be seen manipulating a set of cutlery, a plate, and a cup by picking

more objects while securely holding on to others and moving them from the counter.

This type of task execution is called compound manipulation. This skill is not achievable
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by most current robotic grippers due to the complexity of the task and individual control

over the joints required to execute them successfully.

7.5.1.4 Grasp Conversion Manipulation

Grasp conversion manipulation refers to the ability of the human hand to move the ma-

nipulated object from one grasp type to another during the execution of a task. This is

demonstrated by a user moving a cup grasped in a large diameter power grasp type to

a precision disk type grasp while picking and placing a cup from the counter onto a

dishwasher without losing contact with the manipulated object as shown in Figure 7.7e.

7.5.2 Summary

These five manipulation strategies enable the human hands to complete the kitchen task

execution across various categories in a fraction of the time required by the robotic grip-

pers. The inability of the current gripper to perform these complex manipulations limits

its task execution and increases the task completion time. The gripper performance can

be improved significantly by incorporating these manipulation capabilities.

7.5.3 Data Availability and Dedicated Website

The complete dataset, videos in HD quality, and a dedicated website complementing this

study can be found at the following URL:

www.newdexterity.org/kitchendataset

7.6 Discussion from Initial Analysis

In this study, we compared the performance of robotic grippers and humans in the ex-

ecution of complex kitchen tasks grouped under different categories. A comprehensive

dataset containing more than 2000 annotated kitchen activities was created from videos

of users performing the tasks in their kitchen environment. A detailed analysis of this

dataset was performed to extract the most commonly employed grasping and manipula-

tion strategies in kitchen activities. An anthropomorphic hand and a parallel jaw gripper

operated using an arm-mounted human machine interface were used to complete the

same set of tasks in a kitchen setup at the lab. We compared the performance of human

hands and robotic grippers against each of the activities in the dataset and we presented

a color-coded dexterity map that enables us to visualize their current capabilities and

limitations in the execution of complex kitchen tasks. The capability map classifies the
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activities into tasks that the robots can execute into 3 classes: i) can complete efficiently,

ii) require multiple attempts or significantly higher duration, and iii) not achievable with

the current design of robots. Further, evaluating the task completion time revealed that

the humans only required a fraction of the time taken by the robot counterparts for the

successful execution of the kitchen tasks indicating the need for massive improvement

of the robotic grippers. We have classified five major manipulation strategies employed

uniquely by humans to achieve this efficiency level in a kitchen-oriented task-specific

taxonomy. The key insights from the initial analysis is used to create an expanded dataset

that includes further essential attributes to the annotation process.

The rest of the chapter is organized as follows: Section 7.7 details the creation of

the expanded dataset, section 7.8 introduces clustering for analysis of the data, section

7.9 discusses the various data processing methods employed, section 7.10 presents the

various clustering algorithms used in this study, while section 7.11 presents the validation

and interpretation of the clusters, section 7.12 discusses the variation in task execution

strategies across subjects, and section 7.13 concludes the chapter and discusses some

potential future directions.

7.7 Further Expansion and Evaluation of Kitchen Dataset

We further expanded the dataset by annotating the videos recorded from a number of

further subjects in their respective kitchen. Certain tasks were also performed under spe-

cific protocols to restrict the numerous grasping and manipulation options available to

humans and examine the performance under new conditions. Examples include loading

the dishwasher one object at a time to directly compare the performance of the robotic

grippers and humans performing the exact task. We annotated further detailed features

to understand other contributing factors in the improved human task performance. The

total number of attributes included in this dataset was increased to 24 (from 13 in the

initial dataset). A detailed guide explaining the annotation process starting from the

naming convention of the files, each of the attributes being annotated, and guidelines

for selecting the pre-established options for classifying each attribute are provided in

Chapter VI B. Some critical features added to the annotation include object properties

such as shape, size, and weight among others to determine the correlation between the

grasp/manipulation selection with respect to certain object classes. Another key addition

to this dataset includes the height where the object is located in the environment and how

the human hand-arm system approaches the object. This can help determine strategies

for the robot arm-hand system to execute the best approach, grasping, and manipulation

of objects depending on their location.
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Our analysis of the earlier dataset showed that the effectiveness of the robot hands de-

creased significantly when the objects to be manipulated were buried under other objects

or placed in unconventional orientations. This required the robot grippers to determine a

sequence of steps to move the objects on top, pick the specified object, and place the other

objects back in their original position, causing a significantly increased task completion

time. Hence, we captured the orientation of the objects being grasped and manipulated

in the expanded dataset to analyze the specific strategies employed by humans in over-

coming these instances. We also captured the shoulder movements and posture of the

humans during the execution of the task to determine their importance in improving the

task execution capabilities. All the options associated with the task attribute were sim-

plified to a single word description of the task. All the possible options for each attribute

were provided and could be chosen from a drop down option by the annotators. New op-

tions identified for the attributes were added to the pre-established options as and when

deemed necessary during the annotation process.

The new dataset was generated from videos of kitchen tasks executed in the home

kitchen environment of three subjects over five trials. The tasks and trials were performed

over a number of days at different times of the day and were not performed consecutively

to avoid fatigue and repetitiveness of the tasks. The dataset comprising of high definition

videos (total duration ~7 hours), and detailed annotations including more than 10,000

activities is made available on the following URL:

www.newdexterity.org/kitchendataset

7.8 Dataset Analysis using Clustering Techniques

A multi-dimensional dataset was the result of the annotation process. To detect underly-

ing structures in the data we employed a series of clustering techniques [164]. Unlike the

earlier analysis, we did not impose any predefined classes or labels on the dataset entries.

The clustering techniques were used to generate clusters from the activity attributes and

provide us with patterns among the dataset. The similarities and differences among the

clusters were analyzed to provide us with information regarding the attributes associated

with them. The cluster analysis procedure followed in this study is presented in Figure

7.8.

The video samples were collected from the kitchen tasks that were executed by all

subjects and were annotated during the data labeling phase. The complete annotated

dataset was used for the analysis in this work and is presented in detail below.
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Figure 7.8: The process of analyzing the dataset using clustering algorithms.

7.9 Data Processing

The first step in processing involved data preparation. This step ensured the dataset was

continuous and was converted to the necessary structure required for processing. The

dataset was checked for empty rows and rows that missed significant information re-

quired for the processing. Such entries were removed from the dataset. The dataset was

checked for missing values post this step across the various columns and the missing

values were replaced by NaN to enable further processing. This was followed by con-

verting the time taken for task completion columns to numerical values and validating

the entries based on the start and end times of the tasks. This was performed to ensure

the time duration column did not contain any null or negative values that would indicate

an error in the annotation or preprocessing stages.

Once this was complete, the "start time" and "end time" columns became redun-

dant and were dropped from the dataset. The attributes were analyzed to identify outliers

and the outliers were either associated with existing variables wherever applicable. The

values that could not be grouped under the pre-established categories were grouped as

"other". Specific attributes in the dataset that were not significant for a given analysis

were also dropped. For example, the initial clustering of grasping/manipulation charac-

teristics associated with the object properties and orientation did not depend much on the

"Washes hands" column as all entries fell under the same option ("No" washing of hands

was recorded). Hence, this column was dropped from the analysis.

As most of the attributes in the dataset were made up of categorical data, they need

to be transformed in order to be processed by the clustering algorithm [165]. We em-

ployed various encoding methods including one-hot encoding, dummy encoding, and
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Figure 7.9: The various encoding methods used for converting the "Grasp Classification"

categorical variable to a binary/numerical variable are presented in this image. The binary

values for each of the categorical values generated by one-hot encoding and dummy

encoding as well as the numerical values generated by the label encoding methods can

be seen in the figure.

label encoding methods to the categorical values as shown in Figure 7.9. The simple and

commonly used label encoding method assigned an integer value to each of the cate-

gorical classes. However, it also introduced a false sense of the ordinal relationship. For

example, the "precision" class with an integer value of 2 is considered more significant

than the "power" class with an integer value of 0. Since the categorical variables in the

dataset do not have an ordinal relationship, a one-hot encoding is employed to generate a

binary variable for each unique value in the dataset. However, this resulted in N columns

for the N unique categorical values. Dummy encoding though similar to the one-hot en-

coding method, resulted in N−1 columns. Even after dropping some of the columns, the

resulting dataset was still in a very high dimension. This makes visualizing the data in-

feasible while also significantly increasing the computational time and cost. To overcome

this limitation, dimensionality reduction techniques were used to process the dataset.
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Figure 7.10: The figure presents the "Grasp Classification" attribute in the dataset being

converted using the one-hot encoding from categorical to binary values.

We applied dimensionality reduction to project the data onto a lower dimensional

space (2D) retaining most of the data variance. The most commonly employed dimen-

sionality reduction technique PCA (Principal Component Analysis), was not effective

as it did not retain the non-linear variance of the dataset. Hence, in this study we em-

ployed the non-linear dimensionality reduction technique, t-SNE (t-distributed Stochas-

tic Neighbor Embedding) [166]. This algorithm is effective in retaining local variance

by retaining the variance of local points and embedding them into lower dimensions by

retaining the structure of neighboring points. The PCA was applied only for dimensional-

ity reduction and visualization of the variance across the subjects [167]. The dimension-

reduced dataset is provided as the input to the clustering algorithms for further analysis.

7.10 Clustering Algorithms

7.10.1 K-means Clustering Algorithm

K-means is one of the simplest and most popular unsupervised machine learning algo-

rithms used in clustering. It groups the various data points into clusters based on their

similarities resulting in patterns of the data. The k-means is a centroid based algorithm

that allocates each point in the dataset to one of the "k" centroids of clusters based on

distance [168]. We need to provide the number of clusters "k" as input to the algorithm.

To identify the optimal value for "k", we employed the elbow method to calculate the

distortion score for all clusters for a range of k values [169]. The distortion score is cal-

culated as the sum of squares distances from each point to its respective centroids. The
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scores for the various values of k are then plotted and the point of inflection (elbow) in

the resultant line chart that resembles an arm is chosen as the best value of k. For our

dataset, the optimal value for k was calculated as 5.

7.10.2 DBSCAN Clustering Algorithm

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [170] is an-

other clustering algorithm that groups high density data into clusters separated by regions

of lower density. Unlike the k-means algorithm, DBSCAN does not require the number

of clusters to be provided as input beforehand and is capable of identifying outliers in

the dataset as noise. The only parameters required by the DBCSAN algorithm are ε - the

minimum distance between the points for them to be considered neighbors and minPts

- the minimum number of points required to form a dense region or cluster [171]. The

minPts was calculated as 2 ∗Data dimension. And the ε value was calculated by plot-

ting the distance between each data point to its closest neighbor calculated using Nearest

Neighbours. The maximum value at the curvature is determined as the ε . However, this

resulted in more than 30 clusters with enormous overlapping. Hence, the optimal val-

ues were chosen empirically based on the silhouette scores obtained for varying ε and

minPts.

7.11 Cluster Validation, Analysis, and Results

The outputs of the clustering algorithm were validated using three measures: the Davies-

Bouldin index [172], Silhouette coefficient [173], and Calinski-Harbasz index [174]. The

Davies-Bouldin index calculates the average "similarity" between clusters by comparing

the distance between the clusters with their respective size. A lower Davies-Bouldin in-

dex signifies a model with better separation between the clusters. On the other hand, the

silhouette method validates clusters based on two measures: a - the mean distance be-

tween a given point and all other points within a cluster and b - the mean distance between

the point and all other points in the next neighboring cluster. The two measures provide

us with the closeness of points within a given cluster and the distance of points between

different clusters. The value of this measure varies from -1(incorrect) to 0(overlapping)

to 1(highly dense) clusters. The Calinski-Harabasz index validates clusters based on the

ratio of the sum of between-clusters dispersion and inter-cluster dispersion for all clus-

ters. A higher score represents a better clustering performance. The scores for the various

measures obtained by the k-means algorithm and DBSCAN algorithm are presented in
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Table 7.2. As shown in the table, the current dataset was more efficiently clustered us-

ing the k-means algorithm indicated by the higher values for silhouette’s co-efficient and

Calinski-Harabasz as well as the lower Davies-Bouldin index. These indexes represent a

higher similarity between the data points within the k-means cluster as compared to the

DBSCAN cluster.

Table 7.2: The table presents the validation scores for the K-means and DBSCAN clus-

tering algorithm for the current dataset.

The clusters obtained from the k-means are presented in Figure 7.11. The optimal

value of k provided as input resulted in 5 clusters using the k-means clustering method.

In comparison, the DBSCAN algorithm provided 9 clusters for the optimal value of ε and

minPts. The clusters produced by the k-means algorithm had a more uniform distribution.

In contrast, the clusters formed by the DBSCAN algorithm are unbalanced owing to the

higher density of data across the plane resulting in a huge number of data points being

allocated to cluster 1 (8739 points). Also, as indicated by the low silhouette coefficient

there is an overlapping of clusters created by DBSCAN. Hence, we only utilized the

results from k-means clustering in this study.

In Table 7.3, the distribution of the various vital characteristics among the clusters is

presented. The number of elements in each cluster averaged at 2000 and it can be seen

from the table that closely related activities are grouped together signifying the cluster

efficiency. For example, cluster 0 grouped activities involving the loading and unloading

of dishes from a dishwasher that only required four different grasps and manipulating

the grasped object without motion at contact for the successful execution of the majority

of tasks. On the other hand, cluster 2 and cluster 3 captured the cooking tasks includ-

ing the preparation of breakfast, lunch, and dinner, and operating the appliances. These

clusters required over 9 grasps each to complete a significant part of the tasks. While

cluster 4 required the pick & place tasks, the opening and closing of various objects were

grouped under cluster 2. The requirement of the MT8 manipulation type shows a num-

ber of objects were placed and moved without completely restricting their motions in a

grasp (non-prehensile). Cluster 4 had the most number of mixed activities compared to
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Figure 7.11: The clusters generated for all the activities of the kitchen dataset using a

k-means clustering algorithm.

other clusters even though stocking tasks occupied a significant portion of the cluster.

The requirement for "carry" tasks along with pick & place correlates to carrying the ob-

jects from the counter or shopping bags to the fridge/pantry during the stocking tasks.

And the grasp conversion used by humans while picking and placing the objects into a

dishwasher can also be seen from the task type and category columns of cluster 4.

It is evident from these observations that the points within each cluster have a high

similarity with each other and are well distinct from the points in neighboring clusters.

Hence, the unsupervised learning methods employed in this study can successfully group

data points into clusters enabling us to visualize the similarities and characteristics of

each cluster. Furthermore, these clustering analysis reinforce our earlier inference that

a majority of the kitchen tasks can be successfully executed using a limited number of

grasps without the need for complex in-hand manipulation tasks. A significant part of

the activities performed in the kitchen environment could be classified into simple tasks
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Table 7.3: The table presents the analysis of the clusters generated by k-means clustering.

The distribution of the task types, number of grasps, manipulation strategies, and kitchen

task categories that contribute towards a majority of each cluster (greater than 2/3 of the

cluster) are presented in the table.

like pick, place, open, close, and hold among others that can be executed by grasping an

object and moving it in space without changing the contact points.

7.12 Inter-subject Variability of Grasping and Manipulation
Strategies

The dataset was analyzed to derive specific inputs for further data collection and for

determining the tasks/strategies that require more focused analysis. The percentage dis-

tribution of the various grasping and manipulation strategies employed by individual

subjects for each of the ten kitchen tasks was calculated from the dataset. This provided

us with the percent usage of over 45 different grasp types and over 15 manipulation types

employed by the subjects for the successful task completion stored in a 45 dimension and

15 dimension space respectively. The distribution of the grasp classes (power, interme-

diate, precision) was also calculated for the task categories. To visualize this data and

enable easy computation, principal component analysis (PCA) [167] was employed to

reduce the dimensionality of each of these distributions to two dimensions. The resulting

visualization shown in Figure 7.12 resulted in 10 data points per subject (annotated as

H1, H3, and H5 respectively) corresponding to each of the task categories (represented by

specific colors). To calculate the variability in the grasp and manipulation strategies for a

given task, a polygon is formed using the projection of each subject for the corresponding

task as the vertices. For a given N number of subjects, the inter-subject variability μ is

the area of the polygon given by Eq. 7.1.

μ =
1

2

N

∑
k=1

|(xkyk+1 − xk+1yk)| (7.1)
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where x and y are the 2D coordinates of each distribution in the dimensionality reduced

space. The area of the polygon provides the similarity or variation across the subjects.

The results of the variance for each of the task categories are detailed in Table 7.4.

Table 7.4: The table presents the inter-subject variability of the various grasp classifi-

cation, grasp types, and manipulation types employed for the completion of the various

kitchen tasks. The variability is calculated as the area of the polygon formed by the di-

mensionality reduced projection of the strategies of individual subjects for a given task.

The variability is higher if the area of the polygon is higher indicating that the sub-

jects employed different strategies from each other for the completion of the specific

task. It can be noted from the table that a higher variation in the grasp types usually is

complemented by a high variance in grasp classification. This could mean that the sub-

jects employ different grasp types classified under different categories (power, precision,

intermediate) for successful completion. While the first subject might employ a rigid

power grasp, the following subject might use a precision grasp to restrict the motion of

a given object. This difference in grasp strategies might stem from a personal preference

as well as environmental conditions such as the location of the object. Irrespective of the

cause, these tasks require attention during the further data collection stages to determine

the ideal strategies to be transferred to robot grippers and hands. Another common ob-

servation is that the grasping and manipulation strategies vary inversely with each other

in most cases. For example, the stocking of the pantry and fridge had a high variability of

grasp types across the subjects. This can be attributed to the different objects/groceries

being stocked in each kitchen requiring a different grasping strategy. However, these

tasks only involved picking up the groceries and placing them on the pantry/fridge shelf.

Hence the manipulation strategy used by all the subjects is identical resulting in a low

variance. On the other hand, all subjects used similar grasping strategies for unloading a
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Figure 7.12: The inter-subject variability in the a) grasp classification, b) grasp types, and

c) manipulation strategies employed for the completion of the various kitchen tasks are

calculated from the 2D dimensionality reduced projection of each subject.
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Figure 7.13: The inter-subject variability mapped along with average task execution time

for: a) grasp type (fridge task), and b) manipulation type (unloading dishwasher). In such

cases, the fastest task execution time would allow us to select the strategies employed by

one subject over the other.

dishwasher but the manipulation strategies varied widely. Similar variation can also be

observed in the clearing of trash where the object to be grasped remained identical with

different manipulation strategies being employed.

The primary focus of this data collection and analysis is to identify the key skills

employed by humans for the successful execution of various task categories in a kitchen

environment. This would enable the identification and transfer of key skills for the de-

velopment of robotic grippers and hands that can perform on par with humans as well as

collaborate with humans. The tasks with a low variance indicate a standard strategy being

employed by all subjects and are directly transferable to robots. Tasks such as cleaning

the counters and loading a dishwasher have a very small variance across the subjects

and the grasping/manipulation strategies employed for these tasks can be used by the

robotic end-effectors. On the other hand, the tasks with a high inter-subject variance

such as cooking require data collection from a number of subjects to determine the ideal

strategy. And determining the cause for the variation across subjects can also provide

insights for the selection of optimal grasping and manipulation strategies by considering

other parameters such as the speed of execution and accuracy. For example, if each of

the subjects uses a different set of strategies for identical objects placed in similar con-

ditions owing to personal preference, the strategy that enables the fastest task execution

and higher accuracy can be chosen over others.

Figure 7.13 presents the inter-subject variability for grasp type and manipulation type

for a given task color-coded based on average task completion time. Subject 3 employed

a "Large diameter grasp" for a majority of the fridge loading task as opposed to subject

1 and subject 5 who performed most of the tasks using the "precision sphere" grasp type.

It can be seen from Figure 7.13a that subject 3 had the fastest execution time indicating
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the effectiveness of the "Large diameter" grasp type in loading the fridge. Similarly in

Figure 7.13b, subject 1 completed unloading the dishwasher faster than other subjects

by combining manipulation of grasped objects (with fixed contacts), non-prehensile ma-

nipulation of objects (pushing or moving the objects without grasping), and grasp con-

version manipulation. While subject 2 and subject 3 were slower as they did not employ

non-prehensile manipulation of the objects resulting in a slower completion time. Hence,

it is beneficial to impart non-prehensile manipulation strategies to robots to achieve faster

task execution.

Thus, the analysis helps select the optimal strategies employed by the various sub-

jects. It also provides directions for the specific data to be collected and key attributes

that require focus during data collection to improve the skill transfer and collaboration

between humans and robots.

7.13 Conclusion and Future Directions

In this study, We further expanded the initial kitchen dataset by annotating videos

recorded from a number of further subjects that included tasks being performed under

specific constraints. Over 24 attributes were annotated for each activity and a compre-

hensive dataset containing more than 10,000 kitchen activities was created from videos

of users performing the tasks in their kitchen environment. The multi-dimensional dataset

created from this process was analyzed using clustering, an unsupervised classification

method. The preliminary results show that the clustering algorithm can utilize the in-

put data feature space to define and address the proposed goal of analyzing and finding

patterns in the dataset. The generated clusters reinforced our earlier inferences by group-

ing, for example, activities involving loading and unloading dishes from a dishwasher

together (cluster 0). And a majority of the tasks in each category can be completed us-

ing a limited number of grasp and manipulation types. Hence, given new input data, our

trained clustering algorithms would be able to extract information and predict to which

clustering group this data belongs. This relationship knowledge can direct and optimize

future applications by focusing on the desired feature space and cluster group. Further

data from multiple subjects need to be recorded to improve efficiency and validate the

clustering algorithms further.

The primary focus of the dataset is to determine the strategies employed by humans

for the execution of kitchen tasks and transfer the necessary skills to a robotic end-

effector enabling it to complete the tasks autonomously or collaborate with humans. The

percent distribution of the various grasping and manipulation strategies was presented in
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a dimensionality-reduced space. We analyzed the inter-subject variability for the differ-

ent task categories in this space to determine the commonly employed strategies that can

be directly transferred to the robots. For example, all subjects employ identical skills for

cleaning the counters and loading a dishwasher and these can be transferred more directly

to a robotic end-effector. The tasks with high inter-subject variability require further data

collection to determine the ideal strategies and form conclusive results. The current anal-

ysis shows a high variation in grasping strategies for stocking the fridge and pantry. The

manipulation strategies vary highly during unloading the dishwasher and clearing the

trash. Hence, attention needs to be paid to the data collection of the above-mentioned

tasks across many subjects to determine the ideal grasp/manipulation strategies. In case

of high variance across subjects, further input parameters such as speed of task execution

and accuracy can help select subjects that employ the ideal strategies. Further constraints

such as a limited number of grasps, fingers etc could be added during the data collec-

tion to eliminate the subject bias generated by individual preference and limit the grasp

choices. This will also make the skill transfer to robotic grippers/hands more effective

as they are usually capable of executing a limited number of grasps. The insights from

this work can be used to develop new classes of robotic grippers and hands capable of

performing on par with human hands.
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Chapter 8

Exploiting Post Contact
Reconfiguration of Adaptive Robot
Grippers and Hands

8.1 Introduction

Adaptive robot hands have received an increased interest over the last decade due to their

simplicity and intuitiveness of operation, their cost effectiveness, and their paramount

efficiency in executing robust grasping and dexterous, in-hand manipulation tasks. This

new class of hands uses the concept of underactuation (less actuators than the available

degrees of freedom) and structural compliance that allow them to conform to the ob-

ject geometry and improve their performance [175, 143]. In particular, adaptive robot

hands offer an increased performance in extracting stable, precise grasps and full / power

grasps, being able to efficiently replace complex, heavy, and expensive robot hands in

different activities of daily living (ADLs) [15, 176]. Moreover, recent studies have also

demonstrated their efficiency in executing dexterous, in-hand manipulation tasks [177].

Adaptive hands have also been of key interest in the development of prosthetic hands

owing to their increased functionality at reduced size and weight [178]. The Open Bion-

ics hands[179], the SDM hand[180] and the ISR-SoftHand[181] are some examples of

underactuated, adaptive prosthetic hands with compliant joints. However, adaptive hands

also suffer from certain shortcomings and limitations. For instance, the forces distribu-

tion in underactuated fingers is predetermined by their mechanical design and cannot

be easily controlled [182]. Furthermore, reconfiguration reduces the effective grasping

force at the robot fingertips during pinch grasps and could lead to the deterioration of

117
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the grasping capabilities or to failure to maintain the desired object positions and ori-

entations. The post-contact reconfiguration experienced in adaptive fingers is commonly

caused by the compliance of the joints, the non-rigid parts that compose their structure

and the underactuation of the mechanisms [19]. This reconfiguration causes the contact

points between the object and the finger to change until an equilibrium configuration is

reached. Hence the force exertion required to reach an equilibrium depends on the con-

figuration of the individual phalanges, the joint compliance, and the contact area during

reconfiguration [183]. Thus, there is a need to predict the actual force exerted by adaptive

hands during grasping in order to guarantee the execution of stable grasps.

Regarding previous works, a number of studies have tried to determine the relation-

ship between the finger configuration and the forces exerted. Two main matrices are

commonly used to determine the effects of joint configuration on force exertion capabil-

ities [184]. The first is the Jacobian of the finger that transforms the torque at each of the

finger joints to the contact force the finger generates. The second one is the transmission

matrix, that uses the types of transmission systems (e.g., linkages, gears, tendons) as a

function to determine the force output. In [185], the authors determine the output forces

based on the configuration of the differential as well as the open and closed configura-

tions of the fingers and the thumb. In [186], the authors present a method to predict the

contact forces exerted by an underactuated robotic gripper using adaptive neuro-fuzzy

estimation. In [187], the authors propose an observer-based recurrent neural network

(RNNOB) to estimate the non-contact forces during highly dynamic motions. In [188],

authors try to reduce the post-contact reconfiguration based on a data-driven optimization

of underactuated hands.

Additional sensors such as tactile / FSR (Force Sensing Resistor) sensors that can

provide force feedback or a flex sensor that determines the joint angles would increase

the cost, the complexity, and the size of the system. Moreover, the integration of force

and flex sensors in adaptive hands that use flexure joints is extremely challenging from

a cable routing perspective. Hence, in this study we use IMU sensors that are already

used for posture recognition in adaptive hands such as the Pisa/IIT SoftHand [189, 190]

and commercial prosthetic hands such as the i-limb hand[191] and ArUco markers that

provide a vision based estimation of the hand kinematics. The data from these sensors

are then processed to train a machine learning regression model.

In this study, we exploit motion capture systems on adaptive robot hands to esti-

mate the contact forces exerted by adaptive robot hands during fingertip/pinch grasps

by taking advantage of their post-contact reconfiguration profile. As these systems are

highly nonlinear, it is difficult to obtain an accurate mathematical model to predict the
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forces analytically[186]. This study uses a machine learning algorithm (Random Forests

regression) to predict the contact forces exerted by an adaptive robot finger (output of

the model) based on reconfiguration data (input to the model). The reconfiguration data

consists of inertial measurement unit (IMU) data collected from appropriate IMU sen-

sors and vision-based data collected from a set of ArUco markers [41]. All markers and

sensors were fixed on the different phalanges of the examined adaptive robot finger. The

forces exerted by the adaptive finger were measured by a dynamometer (force sensor)

unit. A wide range of experiments was conducted in order to validate the efficiency of

the proposed methods. During the different experimental conditions the pose and the dis-

tance of the finger from the force sensor were varied, as it leads to different post-contact,

reconfiguration motions1.

The rest of the chapter is organized as follows: Section 8.2 introduces the force es-

timation methods proposed, section 8.3 details the experimental setup, section 8.4 dis-

cusses the results, while section 8.5 concludes the chapter and discusses some possible

future directions.

8.2 Contact Force Estimation Methods

The contact forces exerted by the adaptive robot finger are estimated based on the post-

contact reconfiguration profile. This is achieved by using a machine learning algorithm

(Random Forests) in order to formulate a regression problem.

In order to successfully estimate the force exerted by the robot finger, we need to

solve a regression problem that maps the reconfiguration profile of the finger (motor

current, motor position, angle of proximal and distal phalanges w.r.t. the relaxed finger

position) to the force exerted at the fingertip. We choose to use a machine learning ap-

proach because of analytical modelling:

• does not take into account some hard to model phenomena like the deformation of

the fingerpads and the friction in the finger’s tendon routing system

• depends on parameters that are hard to measure with accuracies like the motor load

and the tendon tension

1Majority of the chapter is based on [192], © 2019, IEEE. Reprinted, with permission, from Nathan

Elangovan, Anany Dwivedi, Lucas Gerez, Che-ming Chang, and Minas Liarokapis, Employing imu and

aruco marker based tracking to decode the contact forces exerted by adaptive hands, IEEE-RAS 19th Inter-

national Conference on Humanoid Robots (Humanoids), 2019.
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For solving the regression problem, we compare the performance of three different

models: i) a Multiple Linear Regression model, ii) a Support Vector Machine regressor

with Radial Basis Function (RBF) kernel, and iii) a Random Forest regressor.

Multiple Linear Regression (MLR) models the relationship between two or more

explanatory variables (input feature vector) and a response variable. Support Vector Ma-

chines (SVM) is a popular machine learning tool for classification and regression that

was first proposed by Vladimir Vapnik [193]. SVM based regression is considered a

non-parametric technique because it relies on kernel functions. SVM is a powerful tool,

but the computational and storage requirements increase rapidly when the dimensionality

of the training problem increases. Random Forest (RF) is a supervised learning algorithm

and was originally proposed by Tin Kam Ho of Bell Labs [194] and Leo Breiman [195].

It is an ensemble learning method that consists of many decision trees and it can be used

for both classification and regression. The final output of the RF model is the most pop-

ular class among all the trees in case of classification or the average of the output of all

the trees in case of regression. Since the final output of RF is an average of all the trees,

the output is regularized and is not prone to phenomena like overfitting.

A few other advantages of an RF based learning scheme over others are that it is able

to work efficiently with small as well as large databases, it is fast, and it can solve multi-

dimensional problems. To create an RF model, the trees are grown using the training set.

To do this, the dataset and the feature set are randomly divided by a process called Boot-

strap Aggregation (Bagging). This is a process of random selection with replacement.

Typically, 2/3 of the dataset is selected by bagging, and on this newly selected dataset

Attribute Bagging is performed. Attribute Bagging is done to select ‘m’ features from

the ‘M’ features of the dataset. For example, for 10 different selected values of m, 10

different trees are grown. These trees are tested on the remaining 1/3 of out-of-bag data

and the tree with the best performance is selected. The process is repeated ‘T’ different

times to grow ‘T’ such trees. This approach is also used to calculate the importance of

the feature variables as reported in Fig. 8.5. The raw importance score for each feature

variable is computed as the average importance score of all trees of the RF. During the

model validation phase, we use the 10-fold cross validation procedure to validate all three

types of models that we compare.

8.3 Experimental Setup

In order to validate the efficiency of the proposed methods, we conducted two different

types of experiments involving the collection of IMU data and vision based data of the
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Figure 8.1: The figure illustrates the experimental setup used for IMU-based data collec-

tion. A dynamometer was used to measure the contact force applied by the finger, while

the IMUs were used to measure the Metacarpophalangeal (MCP) and Proximal Interpha-

langeal (PIP) joints. This experiment was conducted for 10 different finger angles from

0◦ to 90◦ in 10◦ steps. The motor, the finger and the dynamometer were connected to

bases that were fixed to an acrylic plate. The experiments were repeated for 10 trials for

every experimental condition.

reconfiguration profiles of the system for different experimental conditions. For both ex-

periments, an anthropomorphic, adaptive, robot finger was used. It consists of a base,

a proximal phalanx, and a second link that combines the middle and distal phalanges.

The adaptive finger has two spring loaded pin joints. The joints have limited range of

operation between 0◦ to 90◦ for θ1 and 0◦ to 90◦ for θ2. The finger structure consists of

a combination of Polylactic Acid (PLA) plastic links and a polyurethane elastomer (ure-

thane rubber Smooth On PMC-780) that is used on the fingerpads to increase the friction
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Figure 8.2: The experimental setup for vision based joint angles data collection. The

camera was positioned at a distance to capture the ArUco markers for estimating the PIP

and MCP joint angles of the robot finger. This experiment was conducted for 10 different

dynamometer (force-sensor) angles ranging from 0◦ to 90◦ in 10◦ steps. The angle change

was achieved by a modular setup that allows a fast adjustment of the dynamometer angle.

The experiments conducted involved 10 different trials for every experimental condition

(dynamometer angle).

between the finger and the object during object handling, while the elastomer at the distal

end of the finger acts like a distal interphalangeal joint (DIP) that has limited mobility

and offers only conformability to the object surface. The robotic finger was designed with

a hlwell-known, tendon-driven actuation system for adaptive and underactuated grippers

[196, 197, 198].

Figure 8.3: Comparison of IMU (left) and ArUco (right) data for MCP and PIP joint

angles for the experimental condition of 30◦ dynamometer angle.
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Figure 8.4: The graph shows the variation of the MCP joint angle, the variation of the

PIP joint angle, the variation of the actual fingertip forces measured by the dynamometer,

and the RF methodology based machine learning model estimations for both ArUcos and

IMUs during one experiment (for 10◦ dynamometer angle).

8.3.1 IMU Based Joint Angles Data Collection

The finger was mounted onto a test structure with detachable mounts that allows us to

vary the distance between the finger and the sensor as well as the angular parameters.

The experimental setup is shown in Fig. 8.1 with the dynamometer mounted with a 30◦

angle on the acrylic plate. Customized, non-conductive mounts were prepared for the

IMU sensors (MPU-9250) to be attached to the finger structure without interfering with

the fingertips and the phalanges reconfiguration. The Biopac MP36 data acquisition unit

(Biopac Systems, Inc., Goleta, California) was equipped with the SS25LA dynamome-

ter and it was used to collect the contact force measurements. The motor (Dynamixel

XM-430-W350-R) and the finger were mounted on a custom acrylic plate while the dy-

namometer was attached to offset acrylic plates that had an angle different between 0◦

and 90◦. The experiments were repeated for 10 trials for every experimental condition.

The IMU data, the motor positions, and the contact forces exerted on the dynamometer

were recorded from the initial position of the finger through to the stop of the reconfig-

uration motion of the examined adaptive robot finger. It must be noted that in certain

cases it was observed that the finger continued to exert forces after the reconfiguration

stopping point, establishing contact with the fingernail. Such trials were neglected due

to the different materials (fingernail is made out of tough resin) and types of physical

interaction involved and they were not included in the examined dataset.
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8.3.2 Vision Based Joint Angles Data Collection

A second optical setup was created using a 4k web camera and a set of ArUco markers

(see Fig. 8.2). The markers were attached on the finger phalanges instead of the IMU

sensors. ArUco is a computer vision processing library developed by Rafael Muñoz and

Sergio Garrido [41] and it allows the detection of appropriately designed square fiducial

markers, providing relative positional data such as the angles and the Cartesian coordi-

nates for each marker. Two markers were attached onto the finger structure (on the two

different phalanges) and the dynamometer was mounted on a pivot locking mechanism

with angular slots the orientation of which could range from 0◦ to 90◦ in 10◦ steps. A pin

was used to lock the base of the dynamometer into predefined 10◦ interval angles and the

motor was used to actuate the adaptive robot finger from a resting position to the surface

of the dynamometer, were forces were exerted. The motor position, the contact forces

exerted and the angular position measurements of the adaptive robot finger joints were

recorded. The experiments were conducted for a total of 10 trials for every experimental

condition examined (different angles / prepositioning of the employed dynamometer).

8.4 Results and Discussion

Results of the IMU based and ArUco based angle measurements exhibit similar charac-

teristics and trends but the ArUco data had higher noise (see Fig. 8.3). The IMU data was

more consistent and the measurements were able to account for small angle changes dur-

ing finger reconfiguration. The noise included in the ArUco datasets was likely caused

by ambient lighting and occlusions or shadows created during the finger motion. The

efficiency of the trained model was assessed by using the percentage of the Normalized

Mean Square Error (NMSE) for accuracy obtained using Eq. 8.1, to compare the pre-

dicted and the actual object motion. The NMSE value of 0% implies a bad fit whereas

the NMSE value of 100% implies that the two trajectories are identical. The NMSE value

is defined as,

NMSE(%) = 100∗
(

1− ||xr − xp||2
||xr −mean(xr)||2

)
(8.1)

where, ||.|| indicates the 2-norm of a vector, xr is the actual reference motion and xp refers

to the predicted motion. Estimation results for the three models examined are presented

in Table 8.1 for all the different configurations of the dynamometer. The three different

techniques that were considered were MLR, RF, and SVR models. The examined RF

based models were trained with 100 trees. For the SVM regressor, we used a non-linear
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RBF kernel. It can be noted that the RF based models had the best performance for all

the dynamometer configurations for both ArUcos and IMUs. Fig. 8.4 compares the actual

fingertip force measured with the contact force predicted using the RF model trained with

the ArUco and IMU data. The features used for the model training were the joint angles,

the motor position, and the motor load (current). The Random Forests model takes into

account the joint angle measurements from the IMU sensors and the ArUco markers

throughout the reaching, contact, and post-contact reconfiguration phases, achieving a

significant accuracy for the contact force predictions up to 96.1% for the ArUco data and

95.3% for the IMU data.

Table 8.1: Motion estimation results for different dynamometer angles

Model Initial Angle 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ Avg

ArUco
Accuracy (%) 84.9 89.9 81.0 86.9 88.2 68.8 80.7 89.3 84.8 80.2 83.5

M
L

R Standard Deviation (%) 2.4 2.6 0.8 1.2 3.1 9.2 5.6 1.0 1.2 2.9 3.0

IMU
Accuracy (%) 88.6 87.3 84.6 75.2 67.0 85.3 82.9 85.8 91.3 88.9 83.7

Standard Deviation (%) 3.1 2.7 6.3 22.1 9.7 5.0 5.5 2.6 1.5 8.9 6.7

ArUco
Accuracy (%) 90.9 93.4 94.8 89.8 89.7 70.3 85.3 91.1 91.9 88.0 88.5

SV
M

Standard Deviation (%) 2.2 3.8 2.3 2.3 3.5 9.4 8.8 1.3 2.6 9.3 4.5

IMU
Accuracy (%) 90.3 89.7 87.7 81.7 68.7 88.2 87.3 90.2 92.1 84.8 86.1

Standard Deviation (%) 3.4 3.2 5.8 10.9 16.5 5.7 5.1 2.6 2.1 8.2 6.3

ArUco
Accuracy (%) 96.1 93.9 95.4 90.1 90.4 72.6 89.8 94.6 94.7 91.2 90.8

R
F Standard Deviation (%) 1.69 2.75 1.57 1.70 3.16 8.20 3.53 1.20 1.26 4.31 2.93

IMU
Accuracy (%) 91.2 90.5 87.7 84.5 68.5 88.2 87.1 90.8 95.3 90.7 87.4

Standard Deviation (%) 3.67 2.96 6.35 6.74 9.66 6.41 6.55 3.07 1.01 4.66 5.10

In Fig. 8.5, we present the importance plots for each feature variable for both the

IMU and the ArUco based RF models, derived by the RF inherent feature variables im-

portance calculation procedure. It is evident that the motor position was overall the most

important feature that was used for the contact force prediction. The MCP and PIP joint

angles follow in importance, while the motor load (current) was the least important fea-

ture examined.

The importance of the features is similar for the two types of motion capture systems.

The variation of the MCP and PIP joint angles during the reaching phase, contact, and

post-contact reconfiguration is presented in Fig. 8.4. It must be noted that the bending

profile of the finger prior to establishing contact with the dynamometer (reaching phase)

remains constant for all the examined experimental conditions. As the finger approaches
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Figure 8.5: Comparison of the feature variable importances for contact force prediction

based on: a) IMU data (subfigure a) and b) ArUco data (subfigure b). The importance

scores are obtained using the inherent RF feature variable importance calculation proce-

dure. The results have been normalized over the results of the 10-fold cross-validation

method.

the object, the MCP joint angle increases while the PIP joint remains unchanged un-

til contact is established. Once the contact is made, the contact force exertion begins

and the force increases gradually. During the post-contact reconfiguration phase, the dis-

tal phalanx keeps bending causing the PIP joint angle to increase while the proximal

phalanx starts reconfiguring backward decreasing the MCP joint angle. The post con-

tact reconfiguration of the finger varied widely for different angular orientations of the

dynamometer with respect to the finger base. The force exertion continued to increase

throughout the reconfiguration. Regarding the accuracies comparison, as it can be no-

ticed in Table 8.1, the estimation accuracies for the RF model trained with the ArUco

data were slightly better than the accuracies of the model trained with the IMU data for

all the dynamometer configurations examined. This can be attributed to the high resolu-

tion of the 4K web camera used for the ArUco markers tracking as well as to the noise in

the ArUco training set that led to the creation of a more efficient regression model. How-

ever the difference between the ArUco and the IMU based models was marginal and

for a robust implementation IMU sensors integrated into the finger phalanges would be

more practical than ArUco markers that suffer from calibration, occlusion, and lighting

condition errors. Furthermore, the ArUco markers require an external camera that needs

to be positioned with a significant offset from the robot hand, making the setup bulkier

and imposing new collision constraints in cases that the gripper is attached on a robot

arm. The IMU sensors on the other hand can be integrated into the finger phalanges by
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design without restricting the motion of the system.

8.5 Conclusion and Future Directions

In this study, we proposed a methodology that combines Random Forest regression mod-

els and motion capture systems to predict the contact forces exerted by an adaptive robot

finger in pinch grasps, using its post-contact reconfiguration profile. Three different types

of models were compared: i) Multiple Linear Regression model, ii) a Support Vector

Machine regressor with RBF kernel and iii) a Random Forest regressor. Each model

was trained with either IMU or ArUco data and the efficiency of the different models in

estimating the exerted contact forces were compared. The experimental validation was

conducted for a wide range of conditions involving different prepositioning of the dy-

namometer with respect to the examined finger. The experimental results demonstrate

that the Random Forest models trained with the IMU or ArUco data can efficiently pre-

dict the robot finger contact forces, achieving high accuracies (up to 96.1%), indepen-

dently of the examined experimental condition. The difference in accuracy between the

IMU and ArUco based models is negligible. However, the IMU sensors provide a more

practical implementation, as they can be integrated within the fingers without affect-

ing the overall performance of the system (imposing new collision constraints). ArUco

markers require a camera, a camera mount, and a significant offset between the cam-

era and the finger, making the solution much bulkier. Many adaptive hands currently use

IMU sensors for posture recognition that could also be exploited to determine the contact

forces without incurring further costs. Though the model is finger specific, it can easily

be retrained for other adaptive fingers. Regarding future directions, we plan to extend the

models for use in five fingered adaptive robot hands and to create a complete framework

for integrated systems to perform complex and dexterous tasks.





Chapter 9

Design Optimization

9.1 Introduction

Robotic hands and grippers are employed as end-effectors of robotic platforms to fa-

cilitate their interaction with the environments surrounding them (e.g., grasp an object,

push buttons, open a door). The versatility and ability of the grippers to manipulate a

wide range of objects across many use cases and scenarios from service tasks [199] to

industrial tasks [200] as well as their effectiveness in completing these tasks can be used

as an indicator of their dexterity[196]. Traditionally, such complex tasks are executed by

employing fully actuated, expensive, rigid robotic hands that require advanced sensing

elements [201, 202]. However, the sophisticated control laws and schemes required by

these hands to operate efficiently complicate their operation. The relatively new class of

adaptive (underactuated and compliant) robotic grippers and hands aims to address these

shortcomings, offering task execution robustness with simplified control. These devices

demonstrate excellent performance in the execution of robust grasping and dexterous ma-

nipulation tasks [45, 143], without requiring sophisticated learning and control schemes

[203]. The superior grasping performance of adaptive hands is typically attributed to

the introduction of structural compliance combined with underactuation that make con-

trol simpler and more intuitive [142]. These characteristics have led to a surge in the

number of studies that focus on adaptive end-effectors. However, the structural com-

pliance and underactuation compromise the pinch grasping capabilities of the gripper,

introducing a post-contact parasitic reconfiguration of the gripper-object system [177]

that affects grasping stability. The optimization of the gripper link lengths is vital for

the minimization of reconfiguration and maximization of the grasping quality achieved

by such an end-effector. Finally, the distance between the finger base frames highly af-

129
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fects the grasping and manipulation capabilities of the gripper as well as the post-contact

reconfiguration of the gripper-object system.

In this study, we propose a framework that improves the dexterous manipulation

capabilities of two fingered grippers by optimizing the finger link dimensions and an-

alyzing the effect of finger symmetry and the distance between the finger base frames

on their manipulation workspaces. The results of this analysis are used to design a new,

improved, multi-modal robotic gripper that performs significantly better than other grip-

pers in the execution of dexterous manipulation tasks without compromising grasping

efficiency. To solve the optimization problem, we employed a parallel multi-start search

algorithm. The optimal link lengths were used to investigate how the inter-finger dis-

tance, the design symmetry, and the object size affect the manipulation workspace. The

results demonstrate that different inter-finger distances lead to completely different dex-

terous manipulation workspace shapes and volumes and that the area of the union of all

workspaces is always larger than the area of any single "optimized" workspace. Moti-

vated by these results, we designed a two fingered, multi-modal gripper with reconfig-

urable finger base frames and lockable joints. This ensures that the gripper can cover

the union of workspaces rather than a single optimal workspace. The proposed gripper

is considered multi-modal as it has a locking function implemented with solenoids that

allows it to transition between an adaptive grasping configuration and a parallel-jaw grip-

per configuration as shown in Figure 9.1. The contributions of this research work are: i)

an optimization scheme for improving the dexterous manipulation capabilities of robotic

grippers and hands and ii) a novel, multi-modal gripper design with reconfigurable finger

bases and lockable joints that exhibit improved manipulation capabilities without sacri-

ficing grasping performance.

9.2 Related Work

A number of studies have focused on optimizing the design parameters of underactuated

and passively adaptive robotic hands so as to achieve increased performance over a large

set of objects and grasping tasks [204, 205, 206]. The design characteristics of individual

fingers determine their ability to interact with other fingers and the environment as well

as to robustly grasp and manipulate various objects. More specifically, the two most im-

portant parameters that contribute to the effectiveness of a robotic gripper or hand are the

link dimensions and the palm width (distance between the finger bases) [207, 208, 209,

210]. Both of these parameters directly affect the range of objects that can be grasped and

manipulated (different sizes and shapes). Design optimization of underactuated robotic



Related Work 131

Figure 9.1: The proposed multi-modal gripper that is equipped with reconfigurable finger

bases to improve dexterous manipulation without sacrificing grasping quality.

gripper parameters has been employed in a number of studies to offer increased dex-

terity despite the small number of controllable degrees of freedom that is used in such

devices. The main parameters that are optimized in these studies are the link dimensions

of the fingers. Previous work has focused on the effect of gripper dimensions on con-

tact force distribution [207]. Six of the seven design variables that were optimized using

the teaching-learning based optimization algorithm in this study were the dimensions of

the gripper. Dong et al employed a genetic algorithm to find the ideal gripper dimen-

sions as well as the most appropriate tendon routing solution, which would optimize the

grasping performance of an underactuated robotic gripper [208]. Datta et al employed

a multi-objective evolutionary algorithm to find the optimal link lengths as well as the

joint angles of a robot gripper [209].

Once the optimal finger dimensions of a gripper have been determined, the ideal

inter-finger distance needs to be calculated as it directly affects the functionality and

dexterous manipulation performance of the system. In particular, the dexterity of a grip-

per or hand is mainly attributed to its fingers’ ability to impart large object motions

and forces during precision grasps, perturbing the object pose [211]. Studies have also

proposed performance indices to quantify this interaction that leads to in-hand manipula-

tion. You et al have quantified the ability of the fingers to interact with each other, using

a performance index called "interactivity of fingers (IF)" and they employed this index

so as to optimize the Saddle joint’s position and orientation [212]. The relation between

the manipulation workspace and the kinematic design parameters (i.e., linkage ratio and
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base width among others) and the differences between the manipulation workspace and

the actual usable workspace have been studied for linkage-based fingers [213]. One of

the key design parameters associated with the design of stable robotic grippers that are

optimized for precision grasps is the palm width as proposed by Leddy et al [214]. This

study also suggests that grasp stability is optimized in underactuated hand and gripper

designs when the palm width and the finger length are equal. Bircher et al examined the

caging ability of underactuated hands and concluded that the palm width should be "just

right" (not too small or too large) to allow for effective caging grasps [215]. For example,

if the palm width is too small, larger objects come in contact with the proximal phalanges

first and are pushed out while the fingers close. This indicates that a variable base width

would be ideal for different objects.

The range of object sizes that need to be grasped and manipulated also determines

the ideal link dimensions and inter-finger distance. Liarokapis and Dollar investigated the

relationship between the object sizes and manipulation range of motion [177], showing

that a given hand can have different manipulation capabilities for different object sizes

and shapes. Hence, the object set to be grasped and manipulated plays a vital role in

determining the dexterous manipulation capabilities of a gripper or hand and should be

considered while optimizing the design parameters. Ciocarlie et al. optimized the link

dimensions to extend the size range of objects a gripper can kinematically enclose/entrap,

through a combination of random search and gradient descent with numerical gradient

computation [196]. Finally, the optimal joint coupling for a wide range of object sizes

and positions has been identified to optimize gripper performance [210].

Although all the aforementioned studies optimized one or more kinematic parame-

ters of robotic grippers, the objective function varied widely focusing on different char-

acteristics, such as: i) the grasping performance [208], ii) the gripping forces [207, 206],

iii) the grasping and manipulation workspace[213], iv) the dexterous manipulation per-

formance [177] among others. Moreover, all these optimization studies were limited to

specific robotic gripper designs, and specific task and application conditions, and consid-

ered only specific and limited object sets. From the examined related work, it is evident

that the link dimensions, palm width, and the interaction between the fingers are the

key parameters that contribute towards the manipulation capabilities of a robotic hand or

gripper. These parameters depend on the object set that needs to be manipulated. Also,

it can be noted that there cannot be a one-size-fits-all gripper for all object sizes. All the

grippers in the aforementioned studies had a fixed pre-determined finger-base position

and inter-finger distance limiting their grasping and manipulation capabilities to a partic-

ular object size range. The multi-modal gripper proposed in this study on the other hand
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has reconfigurable finger base frames and can operate in both an adaptive grasping con-

figuration and a parallel-jaw gripper configuration. This enables the gripper to choose the

right configuration and vary the inter-finger distance, grasping and manipulating objects

of varying sizes1.

The rest of the chapter is organized as follows: Section 9.3 details the dexterous

manipulation workspace analysis, the outcomes of the analysis, and their implications,

section 9.4 presents the design of the proposed multi-modal robotic gripper, section 9.5

presents the results of the grasping and manipulation experiments that have been con-

ducted with the proposed robotic gripper, while section 9.6 concludes the chapter and

discusses some possible future directions.

9.3 Manipulation Workspace Analysis

The workspace analysis of the various two-fingered robotic gripper designs is defined as

a constrained multi-parametric optimization problem. We employ a parallel multi-start

search algorithm to solve this problem. The objective is to find the ideal link lengths and

inter-finger distance of a two fingered gripper that maximizes its manipulation capability

for a set of different object sizes.

Four different categories of two-fingered grippers are analyzed: i) symmetric fingers

with two phalanges, ii) asymmetric fingers with two phalanges, iii) symmetric fingers

with three phalanges, and iv) asymmetric fingers with three phalanges.

9.3.1 Design Variables and Manipulation Considerations

A kinematic model is created for each of the grippers with the link lengths and base

width as variables. The kinematics models of symmetrical grippers with two and three

phalanges are presented in Figure 9.2. Each Degree of Freedom (DoF) can be actuated in-

dependently of the other DoFs as the models are considered to be fully actuated. The five

variables for the robotic grippers with the two phalanges per finger are: i) the four-link

dimensions of the proximal and distal phalanges of the two fingers and ii) the distance be-

tween the finger base frames. The seven variables for the robotic grippers with the three

phalanges are: i) the six link dimensions of the proximal, middle, and distal phalanges

of the two fingers, and ii) the distance between the finger base frames. The object length

is added as a constraint. In order to limit the design space that needs to be explored and

1Majority of the chapter is based on [216], © 2021, IEEE. Reprinted, with permission, from Nathan

Elangovan, Lucas Gerez, Geng Gao, and Minas Liarokapis, Improving Robotic Manipulation Without Sac-

rificing Grasping Efficiency: A Multi-Modal, Adaptive Gripper With Reconfigurable Finger Bases, IEEE

Access, 2021.



134 Design Optimization

Figure 9.2: Kinematic structure of a gripper model with two phalanges (left model) and

a gripper model with three phalanges (right model). B is the distance between the finger

bases and Lpml,Lmid ,Ldtl,Rpml,Rmid , and Rdtl represent the left proximal, left middle, left

distal, right proximal, right middle, and right distal phalanges, respectively.

prevent exploring options that are unrealistic or non-feasible, the following were taken

into consideration:

• The total length of each finger was constrained to have an upper limit.

• This study only analyses pinch grasps and manipulation motions that can be exe-

cuted by the fingertips.

• The in-hand manipulation tasks involving the proximal phalanges of the fingers

are excluded from this analysis.

• Equilibrium point manipulation was hypothesized that is executed with point con-

tacts in each finger. Rolling contacts and the associated slipping that may occur

were hypothesized to be of minimal significance for the purpose of this work.

Such phenomena are also hard to model and simulate.

• For the symmetrical designs of robotic grippers with two and three phalanges,

symmetry is set as a constraint.

• The object is added as an extra link to one of the fingers. Thus dexterous manip-

ulation is modelled as the inverse kinematics problem of finding the configuration

of the finger with the extra object link that can reach the tip of the other finger (if

such a configuration exists).

9.3.2 Problem Formulation

The volume of the dexterous manipulation workspace is given by the function V (x)
where x is the vector containing the decision/design variables presented in the previ-
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ous section. Thus, the optimization problem to maximize the volume of the manipulation

workspace by finding the ideal link lengths and distance between the finger base frames

can be written as presented in Eq. (9.1),

x∗ = argmin
x

−V (x)

s.t.
(9.1)
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where np is the number of phalanges and the maximum link dimensions for left (ll
max) and

right (lr
max) fingers are limited to the sum of individual finger length and object length and

lb is the distance between the finger bases calculated as the difference between the total

link dimensions (including the object length) and finger lengths. The symmetry between

the left and right fingers is added as a constraint (when needed). The constraints for the

objective function are presented in Eq. (9.2), as follows

ltotal = lr
max + ll

max + lb

ll
max = lr

max = ltotal + lob j

ll
p = lr

p

ll
m = lr

m(for np = 3 only)

ll
d = lr

d

(9.2)

The proposed formulation seeks to identify the ideal link lengths and the distance

between the finger base frames that maximize the dexterous manipulation workspace.

The gripper model was created using the MATLAB Robotics toolbox [217]. The initial

dimensions of the gripper and the range of object sizes are provided as user-defined in-

puts. An f mincon solver is then used to search the optimization space using a non-linear

gradient ascent. The optimization speed was optimized using MATLAB’s parallel solver

by initiating the parallel pool and the multi-start algorithm. The parallel pool employs

multiple solvers each initiating from a random start point spread across the search space

to solve the optimization problem in parallel. Apart from ensuring that the optimization
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Table 9.1: Manipulation capability results for various types of grippers and varying object

diameters.

Manipulation Capability Metric WSopt/
n⋃

i=1
WSi

Object Length 0 mm 10 mm 20 mm 30 mm 40 mm 50 mm

Symmetric gripper with 2 phalanges per finger 0.9745 0.9302 0.8627 0.7955 0.8975 0.8983

Asymmetric gripper with 2 phalanges per finger 0.8137 0.933 0.8728 0.8429 0.8717 0.8827

Symmetric gripper with 3 phalanges per finger 0.9692 0.4934 0.9169 0.8541 0.7602 0.8415

Asymmetric gripper with 3 phalanges per finger 0.5821 0.4065 0.9537 0.8384 0.932 0.9

does not exit on a local maximum, the multi-start algorithm also increases the optimiza-

tion speed considerably. Once the function tolerance is reached, the solver exits with a

positive flag providing the optimal link lengths for a given object size.

9.3.3 Manipulation Workspace Generation

The dexterous manipulation workspace is calculated as the space occupied by the possi-

ble positions that the object’s center of mass can attain during in-hand manipulation in

the manipulation plane. These positions are derived as a set of points, a point cloud. The

bounding volume of the point cloud is calculated using the al phashape method, which

formalizes the abstract shape of the given set of points using Delaunay triangulation

[218].

9.3.4 Manipulation Workspace Implications

The manipulation workspace was significantly influenced by each of the design variables

and constraints. The manipulation workspace for the robotic gripper with the three pha-

langes is higher than the robotic gripper with the two phalanges when they have the same

total finger length. This could be attributed to a finer control over the workspace provided

by the extra link. The optimal ratio of the lengths of the proximal and distal phalanges for

the symmetrical gripper with the two phalanges averaged at 0.61 and 0.39, respectively.

For the symmetrical design with the three phalanges, the ratio of the proximal, middle,

and distal dimensions averaged at 0.29, 0.34, and 0.36 respectively. When the constraint

of symmetry was removed, the right finger ratios changed to 0.38, 0.28, and 0.33 for

the proximal, middle, and distal phalanges, while the respective ratios for the left finger

averaged at 0.38, 0.31, and 0.32. For the gripper with the two phalanges, the right finger

ratio remained identical to the symmetrical gripper averaging at 0.60 and 0.40 for the

proximal and distal phalanges respectively, with a standard deviation of 0.06. The left

finger dimensions converged to 0.57 and 0.43.
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Figure 9.3: Workspace comparison results for symmetric grippers with two phalanges

per finger and different object diameters. Inter-finger distance was: i) optimized (Bopt),

ii) half the object diameter (Bh), and iii) equal to the full object diameter (B f ).
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Figure 9.4: Workspace comparison results for asymmetric grippers with two phalanges

per finger and different object diameters. Inter-finger distance was: i) optimized (Bopt),

ii) half the object diameter (Bh), and iii) equal to the full object diameter (B f ).
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For all the optimization cases the distance between the finger bases converged to zero.

This could indicate that the manipulation capability is inversely proportional to the inter-

finger distance. To further investigate this effect, the manipulation workspace for varying

inter-finger distance was calculated for the original finger dimension. The results of this

computation are presented in Figure 9.3, Figure 9.4, Figure 9.5, and Figure 9.6 showing

that halving the inter-finger distance results in improved manipulation workspace volume

and causing a change in the workspace shape as well. The shape of the workspace varied

not only for the different categories of grippers but also with each object as seen in these

plots. This can be attributed to the fact that the grasping configuration changes with the

objects as well as with the inter-finger distance. When the base frames are closer, the

fingertips can stay in contact for a greater range of configurations, allowing the object

to be displaced to a wider range of positions to the left and right of the fingers and

resulting in a larger manipulation workspace volume. As the finger bases move further

away from each other, this displacement region keeps decreasing. Once the base frames

move further than a certain limit the object can only be manipulated in a narrow space

between the fingers.

It can also be observed that the workspace generated by the asymmetrical finger

configurations is asymmetrical as well. This effect is more evident in fingers with three

phalanges. Figure 9.6 presents the workspace generated by fingers with three phalanges

under optimal symmetrical and asymmetrical link ratios. It shows how the workspace

generated by asymmetrical fingers is askew and irregularly populated, while the sym-

metrical workspace is uniformly distributed. As the fingers are of different dimensions

the center between the fingers is altered making the workspace favour one half over the

other, resulting in abnormal workspaces with rough edges. The rough edges that change

abruptly throughout also mean that the grasp robustness might be compromised at these

regions and the fingers may lose contact with the object as they traverse through such

regions owing to sudden jerk motions. Though the volume is comparable to the sym-

metrical configurations, the asymmetry would make the control difficult and a decision

would need to be made on which finger or half of the workspace is to be favoured on

a case by case basis. As this seems to cause difficulties under practical conditions, it is

better to opt for symmetrical configurations that result in evenly distributed workspaces

with smoother edges.

The comparison also shows the maximum workspace volume that was achieved with

optimal link ratios and nullified inter-finger distance. It can be noticed that the different

achievable workspaces are not always a subset of the optimized workspace. The differ-

ences in workspace shapes and sizes mean that the fingers can manipulate the objects in
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Figure 9.5: Workspace comparison results for symmetric gripper with three phalanges

per finger and different object diameters. Inter-finger distance was: i) optimized (Bopt),

ii) half the object diameter (Bh), and iii) equal to the full object diameter (B f ).



Manipulation Workspace Analysis 141

Figure 9.6: Workspace comparison results for asymmetric gripper with three phalanges

per finger and different object diameters. Inter-finger distance was: i) optimized (Bopt),

ii) half the object diameter (Bh), and iii) equal to the full object diameter (B f ).
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Figure 9.7: The assembled and exploded views of the proposed multi-modal robotic grip-

per.

different regions of the achievable workspaces when different inter-finger distances are

employed. In order to determine the percentage of area that can be covered with a certain

inter-finger distance, we computed the ratio of the individual workspace to the union of

all workspaces (combined workspace) the value of which was always less than 1. Even

though the ratio was higher for optimized workspaces indicating their ability to cover a

major section of the union of workspaces, they still couldn’t represent the entire union.

The results of these comparisons for all the fingers with two and three phalanges are

presented in Table 9.1. Also, it can be noticed that in the workspace plots there are gaps

and regions that are not connected in some optimized workspaces which are included in

workspaces generated by non-optimal inter-finger distances. The hand would lose contact

with the object in these regions (under normal circumstances), rendering the manipula-

tive space as a set of non-connected regions. Hence, in order to maximize the dexterous

manipulation capability of a two fingered gripper, the distance between the finger base

frames should be reconfigurable, enabling the fingers to reach workspace regions gener-

ated by varying inter-finger distances. Taking all these into account, the gripper described

in Section 9.4 has been designed with reconfigurable finger base frames so as to increase

the volume of the manipulation workspace.

9.4 Design

The ideas derived from the dexterous manipulation workspace analysis were employed

for the development of a multi-modal robotic gripper that is composed of two different

modules: a parallel jaw module and two adaptive robot fingers (as shown in Figure 9.7). A
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Table 9.2: Grasping (G) and Manipulation (M) capabilities of the multi-modal gripper

for five different spheres employing the adaptive gripper mode (at base widths: 0 mm, 30

mm, 70 mm, and 110 mm) and the parallel jaw mode.

Object
Adaptive (0 mm) Adaptive (30 mm) Adaptive (70 mm) Adaptive (110 mm) Parallel Jaw

G M G M G M G M G M

Marble Y Y Y Y Y Y Y Y Y N

Golf Ball Y Y Y Y Y Y Y Y Y N

Racquetball Y Y Y Y Y Y Y Y Y N

Baseball Y Y Y Y Y Y Y Y Y N

Softball Y Y Y Y Y Y Y Y Y N

Figure 9.8: The workspace generated by the gripper was examined for objects of varying

diameter that include: a marble (diameter: 16 mm), a golf ball (diameter: 42.7 mm), a

racquetball (diameter: 55.3 mm), a baseball (diameter: 73.3 mm), and a softball (diame-

ter: 96 mm).

Dynamixel XM430-W350 motor, two linear guides, and a transmission gear are used to

construct the gripper base that creates the parallel jaw module. The two adaptive finger

units are mounted on linear rails allowing them to slide to and away from the gripper

center thereby allowing the inter-finger distance between the finger bases to vary between

0 mm to 110 mm. The parallel jaw motor in the gripper base is coupled to a rack in the

finger units for force transmission. The design of the tendon-driven finger unit is based on

the adaptive robot fingers of the Model O gripper of the Yale Open Hand project [198].

Each finger is actuated using a Dynamixel XM430-W350 motor that is enclosed in the
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finger unit. A locking mechanism is created using a solenoid valve that allows the fingers

to be locked perpendicularly to the base thereby converting the gripper to act as a parallel

jaw gripper. This allows the gripper to exert higher grasping forces owing to the lack of

post-contact reconfiguration in parallel jaw grippers [18]. When this mechanism is not

activated, the finger has a bigger aperture for caging objects more easily, like adaptive

grippers [198]. This allows the fingers to conform to the object’s surface resulting in

a more stable grasp owing to the increase in the number of contact points. Thus, the

proposed robotic gripper exploits the advantages of both these grasping modes (adaptive

and parallel jaw).

Figure 9.9: Dexterous manipulation of a racquetball when the inter-finger distances are:

a) 0 mm, b) 30 mm, c) 70 mm, and d) 110 mm.

9.5 Results and Discussion

The ability of the proposed gripper to manipulate objects of varying sizes is validated us-

ing the object set shown in Figure 9.8. This object set is composed of spherical objects of
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Figure 9.10: Comparison for different types of grasps that are executed with the proposed

gripper.

varying texture and diameter ranging from 16 mm (marble) to 96 mm (softball). The re-

sults of this experiment are presented in Table 9.2 and show that the gripper can success-

fully grasp and manipulate the objects while the fingers were locked at various positions

with the inter-finger distance varying from 0 mm to 110 mm in the adaptive grasping

mode. Although the gripper managed to robustly grasp all the objects using the parallel

jaw grasping mode, object manipulation was not feasible. The manipulation workspace

for a racquetball at its workspace extremes during different inter-finger distances is pre-

sented in Figure 9.9. It shows the variation in workspace shape when the base width is

altered from 0 mm through to 110 mm. It clearly demonstrates that the displacement of
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Figure 9.11: Results for the multi-modal robotic gripper with reconfigurable finger bases.

Comparison of workspace achieved for spherical objects presented in Figure 9.8 that have

different diameters and separated by base width: Bw= 0 mm, 30 mm, 70 mm, and 110

mm.

the object is larger when the inter-finger distance is 0 mm and decreases as the inter-finger

base distance approaches 110 mm, indicating that the manipulation workspace volume is

inversely proportional to the inter-finger distance. The figure clearly shows the variation

in workspace shape when the base width is altered from 0 mm through to 110 mm and

that all workspaces have unique regions. Hence, the union of the workspaces is always

greater than any of the individual workspaces, as shown in Table 9.3. It can also be noted

from Table 9.3 that when the phalange ratio is fixed, the optimal workspace is achieved
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Table 9.3: Results of the multi-modal robotic gripper with reconfigurable finger bases.

The ratio of optimized workspace (WSopt) to the union of all the workspaces (
n⋃

i=1
WSi)

generated for spherical objects of varying object diameter at base width Bw= 0 mm, 30

mm, 70 mm, and 110 mm.

Object Name
Object

Diameter (mm)

WSopt/
n⋃

i=1
WSi

Bw=0 mm Bw=30 mm Bw=70 mm Bw=110 mm

Marble 16 0.8703 0.8234 0.5107 0.1509

Golf ball 42.7 0.8831 0.7661 0.76 0.4556

Racquet ball 55.3 0.7558 0.8512 0.81 0.5421

Baseball 73.3 0.6201 0.7115 0.745 0.5835

Softball 96 0.5425 0.6254 0.7939 0.7413

Table 9.4: Workspace comparison of the multi-modal gripper with the Barrett hand, the

T42 gripper, and the Robotiq 3-fingered adaptive robotic gripper.

Object

Name

Object

Diameter

(in mm)

Planar Manipulation Workspace (in mm2)

Multi-modal Barrett Hand T42
Robotiq

3-fingered

Marble 16 9853.25 3132.09 3503.70 662.94

Golf ball 42.7 12373.54 8015.71 6862.21 2527.41

Racquet ball 55.3 14103.66 10056.80 9035.30 3663.85

Baseball 73.3 17888.25 13338.65 9814.61 5626.74

Softball 96 18849.60 16718.32 12522.67 8446.33

only with a lower inter-finger distance. Moreover, the configuration space of the gripper

gets limited when trying to manipulate an object that is much bigger than the gripper fin-

gers. If the inter-finger distance is increased, the object can be approached by the distal

fingertips from the sides, allowing it to manipulate the object freely. Hence variation of

the inter-finger distance is necessary for improving the overall manipulation capability

when the ratio of the phalanges is fixed. This can only be achieved by a gripper capable

of varying the base-width/inter-finger distance online while maintaining contact with the

object, as demonstrated in this study. Figure 9.10 demonstrates the effectiveness of the

gripper in executing various types of grasps on a number of objects of varying sizes and

shapes using the adaptive and the parallel jaw mode. The manipulation workspace of

spherical objects with varying diameters and inter-finger distances are presented in Fig-

ure 9.11. The unique vertical and lateral manipulation capability of the gripper is demon-

strated in Figure 9.13a and Figure 9.13b. While the gripper can manipulate the objects

along a straight line vertically, the lateral movement is along an arc like most grippers

resulting in a blind space in the gripper workspace. The multi-modal gripper overcomes
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Figure 9.12: Comparison of the workspaces achieved by the multi-modal gripper, the

Barrett hand, the T42 gripper, and the Robotiq 3-fingered adaptive robotic gripper for the

spherical objects presented in figure 9.8 that have different diameters.

this limitation by combining the vertical and lateral manipulation movements, increasing

the overall available manipulation workspace as presented in Figure 9.13c.

In order to compare the efficiency of the multi-modal gripper against some of the

commonly used grippers in literature, the kinematic models of the multi-modal gripper,

the Barrett hand, the T42 gripper, and the Robotiq 3-fingered adaptive robotic gripper

were prepared in MATLAB and the planar manipulation workspace for the objects pre-

sented in Figure 9.8 was generated. The workspace generated by these grippers for the
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(a) Vertical Manipulation of a peg

(b) Lateral Manipulation of a peg

(c) Combined Manipulation of a peg to cover blind space in manipulation workspace

Figure 9.13: Demonstration of a vertical and horizontal manipulation capability of the

multi-modal gripper while performing a peg in hole task.

various objects can be seen in Figure 9.12 and the results of this simulation calculated in

mm2 are presented in Table 9.4. The workspace generated by the multi-modal gripper is

significantly larger compared to the workspaces for the other grippers for the entire set

of objects. This can be attributed to the reconfigurable finger bases of the gripper that

enable it to adapt to various object sizes and cover a wider range of workspace regions

with any given object. This clearly demonstrates the improved manipulation capability

of the proposed gripper.

A video presenting experiments conducted with the proposed multi-modal robotic

gripper can be found at the following URL:

https://newdexterity.org/multimodalgripper
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9.6 Conclusion

This chapter proposed a framework for finding the optimal link dimensions and inter-

finger distance (for a given object) of robotic grippers that are symmetric or asymmetric

with two and three phalanges per finger. The optimization problem was designed so as to

maximize the manipulation workspace volume for a wide range of objects by parametriz-

ing the link dimensions and inter-finger distance and searching the design space for

the optimal values of these parameters. This was performed using a parallel multi-start

search algorithm to solve the multiparametric optimization problem. The optimization

provided us with the optimal link ratios for all four gripper configurations examined. The

workspace analysis results demonstrate that for a fixed finger dimension, the manipula-

tion workspace is inversely proportional to the distance between the fingers and reaches

its maximum volume at zero inter-finger distance. The workspace varied widely in shape

and volume for varying link ratios and inter-finger distances. The achievable workspaces

had unique regions and some of them had gaps or disconnected regions, indicating that

the union of these workspaces is always greater than any individual workspace and that

a gripper capable of covering the union of these workspaces is required so as to max-

imize grasp robustness and improve manipulation performance. Thus, a gripper with a

reconfigurable base was designed and developed and its efficiency was experimentally

validated. The gripper was fabricated with an optimal link ratio and was mounted on a

parallel jaw module that allowed varying the inter-finger distance from zero to 110 mm.

The design is equipped with lockable joints that allow transitioning between an adaptive

grasping configuration and a parallel jaw grasping configuration. The proposed gripper

achieved a great increase in the volume of the achievable manipulation workspace with-

out sacrificing grasping robustness and efficiency. It demonstrated clearly that for a given

link ratio, the manipulation workspace is maximum when the inter-finger distance is zero

and decreases as the finger bases move away from each other. This can easily be extended

to other robotic hands as the parameters and features being optimized here are applicable

to all robotic end-effectors.

In terms of potential future work, the framework will be extended to grippers with

more phalanges and more fingers. Another key priority would be to check how the inter-

finger distance affects the workspace of multi-fingered hand designs. We also intend to

identify and optimize other key design parameters.
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Chapter 10

Conclusions and Major
Contributions

10.1 Conclusion

This thesis focused on the analysis and evaluation of the dexterity and the grasping and

manipulation capabilities of humans and robot hands. To accomplish this, we first in-

vestigated the boundaries of the term dexterity by analyzing, evaluating, and classifying

the various definitions, classes, and metrics described in the literature with respect to

human hands and robotic end-effectors. We then proposed a definition of dexterity that

summarises the key attributes of human and robot dexterity. Based on the analysis, we

proposed a new modular, affordable, accessible open-source dexterity test that enables

the evaluation of human and robot hands alike solely based on their task completion ca-

pabilities irrespectively of individual design parameters. The dynamic dexterity test rig,

standardized objects, benchmarking protocols, and scoring methodology are all open-

source and can be used for replicable research and benchmarking under identical condi-

tions. Human trials were performed to validate the proposed evaluation methods and to

be used as baseline scores for robotic grippers. Further experiments with robotic grippers

and hands revealed a huge disparity in the task completion capabilities and speed (time

required for task completion) when compared to the baseline scores.

This highlighted the urgent need for capability maps and taxonomies that can cap-

ture and map the task execution capabilities of humans to robotic end-effectors. For this

purpose, we created an initial dataset of the various grasping and manipulation strate-

gies employed by the human arm-hand systems for the execution of kitchen tasks from

the video analysis of human subjects performing ADLs in home kitchen environments.

These unique strategies are captured in a kitchen tasks specific taxonomy. The current
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capabilities of various grippers are benchmarked against human performances by per-

forming the same tasks in a kitchen set up at the lab. The abilities and limitations of

the current gripper configurations are presented in a capability map. We also derived the

major attributes used by humans that need to be translated to the robotic end-effectors

for improved dexterity and task performance. An expanded dataset was created by ana-

lyzing videos of further subjects performing kitchen tasks over five trials and including

the key attributes identified from the initial analysis to the annotation process. The ex-

panded dataset included more than 10,000 entries annotated with 24 attributes for each

activity. We performed clustering to analyze this multi-dimensional dataset and identify

underlying patterns among the various grasping and manipulation strategies employed

by the various subjects. While this initial analysis was able to successfully group ac-

tivities employing similar strategies, it also reinforced our earlier suggestion that the

majority of the tasks in each cluster can be successfully executed using a limited num-

ber of grasps and manipulation strategies. Inter-subject variability calculated from the

low-dimensional space of the key attributes was used to derive the most efficient strate-

gies that should be transferred to robotic end-effectors for human-robot collaboration as

well as highlighting the tasks requiring attention (that require more data to be collected)

during further data collection.

This thesis also focused on developing design optimization frameworks and deriving

design guidelines for robotic grippers and hands. Initially, we exploited certain limita-

tions in the current design of adaptive grippers such as joint compliance and underactu-

ation that cause uncertainty post-contact and a parasitic reconfiguration, to improve dex-

terous manipulation through the efficient prediction of contact forces. This was achieved

by predicting the forces exerted by the adaptive grippers from their finger reconfigura-

tion profiles. Further, we derived design specifications for robotic grippers based on the

analysis and optimization of existing gripper characteristics. In particular, the proposed

metrics were used in the formulation of a design optimization framework that improves

the manipulation capabilities of grippers based on their workspace analysis. The effi-

ciency of the optimization framework was demonstrated through the design, analysis,

and experimental validation of a multimodal robotic gripper with reconfigurable finger

bases and lockable joints that exhibits improved manipulation capabilities without sacri-

ficing grasping performance.

The insights from the extensive human trials and robotic experiments performed in

this thesis can be employed to derive design specifications for the development of new

classes of highly efficient adaptive robotic grippers and hands capable of performing on

par with human hands.
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10.2 Major Contributions

The major contributions of this PhD are summarised as follows:

A Comprehensive Dexterity test
For the benchmarking of human and robot dexterity, this study presents a

• A standardized dexterity test consisting of a dynamic rig that requires the object

to be reoriented and assembled during the approach phase to meet the changes in

end position and orientation. This is representative of real life environments such

as assembly lines that require dexterous manipulation in a dynamic environment

with obstacles.

• Open source standardized test rig, objects, standard operating procedures, and

scoring methodology to enable replicable research and benchmarking under iden-

tical conditions.

• A dexterity metric that converts the successful task completion (ability) and rate of

completion (speed) to a scale of 0 (non-dexterous) to 1 (highly dexterous human-

like) irrespectively of independent design characteristics of the gripper.

• Baseline scores obtained from extensive human experimentation. Experimental

validation of the efficiency of the benchmarking system based on human and robot

experiments.

Kitchen Task Specific Dataset and Taxonomy

• The design of a comprehensive dataset of kitchen tasks collected by humans in a

home environment.

• The dataset includes high-definition videos recorded from various angles to sup-

plement each other. The detailed dataset contains each of the activities in the video

annotated with over 24 attributes.

• The dataset has been analyzed to identify the most commonly employed human

task execution strategies and the unique strategies are captured in a taxonomy.

• A capability map that highlights the current abilities and limitations of the robotic

grippers in their performance in various kitchen tasks. This is used to identify the

current shortcomings in the design and control of robotic end-effectors.

• Clustering techniques to identify underlying patterns of grasping and manipulation

strategies employed for the successful execution of a group of tasks.
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• Identified optimal strategies that can be transferred directly to robotic end-effectors

and identified tasks that require further data collection based on inter-subject vari-

ability.

• Derived inputs based on dataset analysis and benchmarking for the development

of new classes of robotic grippers and hands that can perform on par with human

hands.

Exploiting Post Contact Reconfiguration of Adaptive Robot Grippers

• A methodology that combines Random Forest regression models and motion cap-

ture systems to predict the contact forces exerted by an adaptive robot finger in

pinch grasps, using its post-contact reconfiguration profile.

• Remove uncertainties in the force exertion during the post-contact phases of adap-

tive grippers caused by joint compliance and underactuation. Exploit the limita-

tions of underactuated adaptive fingers to increase dexterous manipulation capa-

bilities.

Design Optimization Framework

• A parallel multi-start multiparametric optimization framework was developed to

maximize the workspace volume of grippers with varied configurations (symmet-

ric/asymmetric with 2-3 phalanges per finger).

• Analysed the effect of optimal inter-finger distance for a fixed (optimized) finger

link ratio on maximizing the dexterous manipulation workspace.

• A multimodal robotic gripper with reconfigurable finger bases capable of vary-

ing inter-finger distance while grasping an object, exhibiting increased dexterous

manipulation workspace without sacrificing grasping efficiency.

• Validated the efficiency of the gripper in offering an increased manipulation per-

formance without sacrificing grasping efficiency through experiments and compar-

ison against other state of the art grippers.

10.3 Future Directions

The main directions for future work are:
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• Translate the key strategies of human dexterity derived from extensive human trials

and experiments to autonomous robotic arm-hand system strategies.

• Expand the kitchen task specific dataset by including data of users performing the

kitchen tasks with limited grasping and manipulation strategies. For example, tasks

executed with one hand, use certain predefined grasps only etc. This will provide

further insights into strategies that can be adopted by robotic grippers that have

limited grasp variability.

• Capture grasping and manipulation strategies employed by humans in other envi-

ronments such as performing other ADLs, in a machine shop, assembly lines etc

to derive the key attributes and strategies associated with dexterous manipulation

in these environments.

• Expand the optimization framework to other multi-fingered hand designs such as

anthropomorphic hands.

• Employ the insights from all the aforementioned analyses to derive design spec-

ifications for the development of new classes of highly efficient adaptive robotic

grippers and hands capable of performing on par with human hands.
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Appendix B

Annotation Guide for Grasping and
Manipulation Tasks Executed in
Kitchen Environments

B.1 Instructions for Annotating Each Video

Step1: Create a separate spreadsheet for each trial. Each trial has recordings of the same

scene from multiple angles. Cam1 - POV, Cam3 - Side angle. While most of the informa-

tion can be annotated from Cam1 recording, supplementary information (like posture, is

the user bending, shoulder movement etc) needs to be derived from other camera angles.

Only one spreadsheet should be created per trial.

Step2: Sheets to be named with House/kitchen number, trial number, task name. Eg.,

H4T1_DishLoading refers to House/kitchen 4, Trial 1, loading the dishwasher.

Step3: Fill all columns in the excel sheet using the following set of instruction specifica-

tions.

• If a task lasts less than 1 second, do not record the task.

• If the task is not performed by “Hands”, do not record the activity. Eg. Users

closing the drawer with legs, pushing a door with their elbows etc.

Column 1 Kitchen task name: Select one of the 10 kitchen tasks from the dropdown

menu. For example, Breakfast, Unloading dishwasher).
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Annotation Guide for Grasping and Manipulation Tasks Executed in Kitchen

Environments

Column 2 Video number: Enter the Trial/video number from the video file(1a ,2a, 3a).

Column 3 Task Type: Determine the actual activity from the dropdown list that contains

13 predetermined category (“Pick” , “Lift”, “Place”). If none of the items in the list

describe the activity aptly, populate your own description for this activity. If an object

grasp is changed during the activity, select “convert grasp”.

Column 4 Start time: Time stamp when activity started.

Column 5 End time: Time stamp when activity ended.

Column 6 Duration: Duration for the activity is auto generated from column 4 and 5.

B.1.1 Object Attributes

Column 7 Objects picked: Check if a single object is grasped or multiple objects are

being grasped.

Column 8 Object location:

Low
If the object is located much below waist height requiring the user to bend/lower

in order to reach the object. Eg., plates in dishwasher rack, lower shelf of fridge

Level
Object is around waist high and can easily be grasped from a neutral position.

Eg. object on kitchen counter, stove top etc.

High
Object over chest high, requires the arm to be raised or shoulder movement

to reach the object. Eg. a can in the top shelf of a pantry

Column 9 Object orientation:

Isolated The object is isolated and can be approached/grasped from all direction

Clutter If the object is surrounded by a lot of items restricting identification and grasps

On top
If the object is on top of other objects/pile restricting the grasp to be

approached from one or more sides

Buried
If other objects are lying over the object, that has to be moved to access the

particular object

Irrelevant
The object is not being grasped or manipulated (non-prehensile). Eg. pushing

a pantry door, pressing a button etc.

Column 10 Approach of the arm: Check the angle/direction the arm takes to approach

the object and select one of the options from the list below.

Column 11 Object shape: Select the shape of the object from drop down menu.
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Cylindrical Canned beans, pringles can, bottles, door handles, handles of pots etc.

Boxes Cereal box, Jello box, salt box and other grocery boxes

Sphere Oranges, apples

Flat Includes objects like plates, lids, spoons, buttons, doors etc

Deformable Can be used to classify soft deforming items like cleaning cloth, tissue

Other If the object is irregularly shaped, annotate as other

Column 12 Object type: Choose between one the types of objects listed.

Column 13 Object size:

Small Small objects such as strawberries, lids, cutlery, glasses, etc.

Medium Canned foods, pots/pans, regular groceries, etc.

Large Large can of milk, a rice bag, big fruits such as watermelons, etc.

Irrelevant
The object is not being grasped or manipulated (non-prehensile).

Eg. pushing a pantry door, pressing a button etc.

Column 14 Object weight:

Light Lightweight objects like cutlery, strawberry, empty cups/glasses etc.

Medium This could include pots/pans, canned foods, groceries etc.

Heavy Heavy objects like a large can of milk, a rice bag, a heavy pan etc.

Irrelevant
The object is not being grasped or manipulated (non-prehensile).

Eg. pushing a pantry door, pressing a button etc.

Column 15 Hands no.: Check if the subject uses 1 hand or both hands for completing a

given activity.

• If 1 hand no need to specify which hand. Populate the cell with “One hand”. If

the subject moves an object from one hand to another, it is still classified as “One

hand”. Example: An user picking a glass with left hand, moving the object to right

hand, and placing it down with right hand.

• If the subjects are using both hands to execute a single task, we call it bimanual and

populate the details for what each hand is doing under bimanual(left) and biman-

ual(right). Example: Holding a bottle and opening the lid. Holding a strawberry

with one hand and cutting it with the other.
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• If both hands are used for carrying separate activities, populate separate rows for

left (parallel left) and right (parallel right) hands. Example: carrying a plate in one

hand and glasses in the other. Moving an object with the left hand to place another

object in a dishwasher.

B.1.2 Grasp Attributes

Column 16 Grasp Classification: Determine the hand pose is Power/Intermediate/Precision.

• Power: Firm grasp against palm/pad. Finger manipulation not feasible. Requires

arm movement to manipulate object.

• Precision: Objects can be manipulated easily with fingers. Not held against the

palm. Fingertips/pad involved in grasp.

• Intermediate: Grasp involves equal proportion of power and precision. Involves

firm grasps involving fingers holding objects against the side of another finger.

Column 17 Thumb:

• Abduction - Thumb out of plane from palm/fingers enabling it to oppose the fin-

gers. It can be seen how the thumb has been rotated (to various degree) out of plane

from the palm to oppose the fingers to enable stable grasps.

• Adduction - Thumb in same plane with palm. As shown in the images below, the

thumb is in the same plane as the palm and cannot oppose the fingers.

Column 18 Grasp type: Select the appropriate grasp type from Figure "GraspTaxon-

omy" that matches with the video execution. If the grasp type does not represent any

described in the Taxonomy, choose “Unknown”. In case of view occlusion, check for

nearby non-occluded frames. If still not possible, mark as “Unknown”.

Opposition type:

• Palm: When the object is held firmly against the palm. Commonly observed in

power grasp. Objects can only be moved using arm motion in this configuration.

• Pad: The objects are stabilised against finger pads.
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Figure B.1: Grasp Taxonomy used to classify the various grasps employed by the human hand adapted from [38].
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• Side: The objects are stabilised entirely by finger sides or between finger pads &

side of a finger.

Odd cases:

• Non-prehensile: If the object is not being grasped properly and being moved by

touching it. Example: pushing buttons, closing doors by pushing on the surface.

• Multiple grasps: When multiple objects are being grasped simultaneously.

• Partial grasp: involves cases when the object is not completely grasped/stabilised.

Examples: partial hook using 2-3 fingers to open cabinet door using handle.

B.1.3 Manipulation attributes

Determine the manipulation type using the following steps.

1. Is the hand (fingers, palm, or back of hand) in contact with the object?

a) If there is no contact between the hand and the object , do not record the

activity.

b) If there is contact proceed to question 2.

2. Is the object being held (grasped) by the user restricting the object partially or

fully?

a) If the object is not restricted by the hand, select non-prehensile. Proceed to

question 3. Eg. object is being pushed by the finger or held on palm.

b) If the object motion is restricted fully or partially in the hand by grasping it

using fingers and palm. Proceed to question 4.

Non-prehensile:

3. Check if the object is in motion/stationary during the execution of the task.

a) If object is stationary, select no motion (NM)

- Select 4, if the contact is fixed. eg. holding a plate on your palm, pressing

down a piece of bacon (while your other hand cuts it) etc.
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- Select 5, otherwise.

b) If the object moves during task execution, select:

i. Not within hand ,if the object is moving external to the hand.

- Select 8, if the contact point between the hand/finger and object re-

mains constant. Eg. pushing a button the contact point between fin-

gertip and button remains constant. Other examples include pushing

the door with palm, sliding an object by pushing it with the back of

the palm.

- Select 9, if the contact changes during the activity. Eg. When the

palm is used to clear the cereal spilled on the counter top, the hand

slides over the counter. The hand does not grasp anything, but the

contact point between the hand and the counter changes continu-

ously. Another example is rolling a dough ball using your palm.

ii. Within hand - if the object moves within the hand/fingers.

- Select 12, if the contact point between the hand/finger and object

remains constant. Eg. flipping the oven switch on/off using the side

of your fingers.

- Select 13, if the contact changes during the activity. Turning the

knob by rolling the fingers over the knob (not holding the knob). In

this case, the knob makes contact with multiple points on the finger

during the task.

Prehensile:

4. Check if the object is in motion/ stationary during the execution of the task.

a) If object is stationary, select no motion (NM).

- select 6, if the contact is fixed. eg. holding a bottle using a large cylin-

drical grasp with the left hand (while other hand opens the cap)

- Select 7, otherwise.

b) If the object moves during task execution, select:

i. Not within hand, if the object is moving external to the hand.

- Select 10, if the contact point between the hand/finger and object

remains constant. This is the most commonly employed manipula-

tion type. Eg. Grasping the fridge door handle and pulling it open.
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The contact points between the hand and door handle remain con-

stant throughout the execution of this task. Other examples include

firmly grasping a plate and lowering it in the dishwasher, Grasping

a pot handle and positioning it on the stove top etc.

- Select 11, if the contact changes during the activity. Eg. When the

hand grasps a cylindrical food wrapped in cover firmly, and slides

the cover away. In this case, the contact point between the hand

and the cylindrical food changes continuously. Another example is

pinching a yoghurt sachet at the end, and squeezing it all the way to

the opening to push out all the contents. Again, the grasp remains

constant, but the contact point moves from one end of the sachet to

the other.

ii. Within hand - if the object moves within the hand/fingers.

- Select 14, if the contact point between the hand/finger and object

remains constant. Eg. Picking and turning small food items using

tongs. The fingers hold the tongs at the same contact points while

the tong moves(opens and closes) within hand. Another example

would be using chopsticks.

- Select 15, if the contact changes during the activity. Eg. Twisting

a salt grinder requires the bottle to be twisted multiple times. In

this case, the finger grasps the bottle and completes the first rota-

tion/twist. Then regrasps the bottle at different set of points (fingers

continuously change contact points on the object until task is com-

plete).

Odd cases:

- In-hand stabilised manipulation 16: Holding down an object and manipulating a

part of the object using the same hand. Eg. when the user stabilises the milk can

by holding its handle while twisting the cap using the index and thumb fingers to

open it.

- Compound manipulation 17: Manipulate a wide number of objects of varying

shapes and sizes that each require a different grasp type in a single task.

- Grasp conversion manipulation 18: Move the manipulated object from one grasp

type to another during the execution of a task. Eg. moving a cup grasped in a
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large diameter power grasp type to a precision disk type grasp while picking and

placing a cup from the counter onto a dishwasher without losing contact with the

manipulated object.

Column 20 Movement direction: Identify the movement direction from the drop down

menu. For example, picking a cup from the dishwasher will have “Lift” in movement

direction.

Column 21 Bending: Determine whether the subject is Bending his body/back during

the execution of the task. Levels can be chosen from drop down menu.

Column 22 Shoulder movement: Determine the level of movement in the shoulder

during the execution of the grasping/manipulation from the dropdown menu.

Column 23 Dishes: Determine whether the dishes are wet/dry from the video.

Column 24 Washes Hands: Determine if the subject washes hands.

B.2 Guideline Annotation Sheet

Sample annotation sheet can be downloaded from the following link:

www.newdexterity.org/kitchendataset

Figure B.2: Demonstration of differences between: a) tripod, b) thumb 2-fingered, and c)

lateral tripod.
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B.3 Clarification on common grasps

• Tripod vs Thumb 2-fingered: In a Tripod grasp, the object is held between 3

fingers exerting force (with finger pads) on the object from 3 different directions.

While for Thumb 2 fingers, the object is restricted by forces from 2 directions (The

thumb from one side and the other 2 fingers opposing it.

• Lateral tripod: In a Lateral Tripod grasp, the object is held between 3 fingers

(with 2 finger pads and 1 finger side) exerting force on the object from 3 different

directions.

• Lateral Pinch: In lateral pinch, the object motion is restricted between one finger

pad and the side of another finger as shown.

• Extension type vs Palmar: For Extension type, the thumb is rotated to oppose the

rest of the fingers. And the object is restricted between the thumb and the fingers.

For Palmar: Unlike the extension type, the thumb is not rotated to oppose the rest

of the fingers. The thumb is in the same plane as the palm.

Figure B.3: Demonstration of differences between: a)lateral pinch, b) extension type, and

c) palmar.

• Power Sphere: Not restricted to spherical objects. Object motion is completely

restricted by grasping the object between the finger pads(wrapping around object)

and palm. Object can only be moved with arm motion and not finger movements.

• Precision sphere: not restricted to spherical objects. The Object is restricted by

finger pads(a major portion of the finger wraps around the object). Not held against

palm. If the object was restricted against palm, the grasp should be classified as

Power sphere.
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Figure B.4: Demonstration of differences between: a) power sphere, b) precision sphere,

and c) precision disc.

• Precision disc: not restricted to cylindrical objects. The Object is restricted by

finger pads(in most cases only by the distal finger pads and the fingers do not wrap

around the object). Not held against palm. If the object was restricted against palm,

the grasp should be classified as Power disk.

• Non-prehensile: If the object is not being grasped properly and being moved by

touching it. Example: pushing buttons, closing doors by pushing on the surface.

• Multiple grasps: When multiple objects are being grasped simultaneously.

• Partial grasp: involves cases when the object is not completely grasped/stabilised.

Examples: partial hook using 2-3 fingers to open cabinet door using handle.

Figure B.5: Demonstration of odd grasps executed by humans is shown. Subfigure a)

presents a non-prehensile grasp, subfigure b) presents a multi-object grasp, while subfig-

ure c) presents partial grasps.
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